Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cerevisiae

S. cerevisiae is produced by fed-batch processes in which molasses supplemented with sources of nitrogen and phosphoms, such as ammonia, ammonium sulfate, ammonium phosphate, and phosphoric acid, are fed incrementally to meet nutritional requirements of the yeast during growth. Large (150 to 300 m ) total volume aerated fermentors provided with internal coils for cooling water are employed in these processes (5). Substrates and nutrients ate sterilized in a heat exchanger and then fed to a cleaned—sanitized fermentor to minimize contamination problems. [Pg.466]

C. uti/is yeast is produced by either fed-batch or continuous processes. Aerated-agitated fermentors range up to 300 m total capacity and ate operated in the same manner as described for S. cerevisiae (2,5). C. utilis is capable of metabolizing both hexose and pentose sugars. Consequendy, papermiU wastes such as sulfite waste Hquot that contain these sugars often ate used as substrates. [Pg.466]

Alcoholic Fermentation. Certain types of starchy biomass such as com and high sugar crops are readily converted to ethanol under anaerobic fermentation conditions ia the presence of specific yeasts Saccharomyces cerevisia and other organisms (Fig. 6). However, alcohoHc fermentation of other types of biomass, such as wood and municipal wastes that contain high concentrations of cellulose, can be performed ia high yield only after the ceUulosics are converted to sugar concentrates by acid- or enzyme-catalyzed hydrolysis ... [Pg.18]

Saccharomyces cerevisiae is well characterized biochemically and genetically and was the organism of choice for most of the eady experiments. However, heterologous expression seems to be better in some of the industrial strains of yeasts such as Pichiapastoris Hansenulapolymorpha Kluyveromyces lactis and Yarrowia lipolytica (25—28). [Pg.249]

Yeast. The advantages of expression in yeast include potentially high level production of proteins, the abiUty to have expressed proteins secreted into the media for ease of purification, and relatively low cost, easy scale-up. A disadvantage is that plasmid instabiUty may be a problem which can lead to low product yield. Whereas post-translational modification occurs in yeast, proteins are quite often hyperglycosylated. This is generally a problem with expression in Saccharomyces cerevisiae but not for the more recently used yeast host Pichiapastoris (25) (see Yeasts). [Pg.200]

Significant protection of mice by several polysaccharides other than glucan isolated from S. cerevisiae has been described (209). A 2.16-fold protection in the LD q q is observed for one modifier, MNZ, when given 15 min prior to irradiation. Glucan protects 2.25-fold in this same protocol. Many of these polysaccharides may act through activation of the complement system, rather than directiy on ceHs. [Pg.496]

Saccharomyces cerevisiae S. cerevisiae var. ellipsoideus S. carlsbergensis S.fragilis S. rouxii S. delbrueckii... [Pg.285]

Manufacturing procedures of riboflavin have also appeared using Saccharomjces bacteria, eg, fermentation with a purine-independent S. reverse mutant (61) and with S. cerevisiae NH-268 (62) produced 2.79 g/L and 4.9 g/L, respectively. [Pg.78]

The majority of industrial research describes classical approaches to yield improvement (49). However, there has been some work using genetically modified organisms. In the case of these recombinant organisms, the carotenoid biosynthetic gene cluster has been expressed in noncarotegenic species such as E. coli (50) and S. cerevisiae (51). [Pg.102]

Fig. 1. Scanning electron micrograph showiag ceUs of S. cerevisiae. Bud scars are visible at the ends of ceUs. Scale bar is 5 p.m. Fig. 1. Scanning electron micrograph showiag ceUs of S. cerevisiae. Bud scars are visible at the ends of ceUs. Scale bar is 5 p.m.
Fig. 2. Karyotype of 10 S. cerevisiae strains. Intact chromosomes have been separated electrophoreticaUy by size in a TAPE gel. (a), gel mn to separate most chromosomes. Large chromosomes are at the top, smaller at the bottom. Since most strains are polyploid, more than 16 bands may be observed, (b). Chromosomes from the same strains have been separated in a gel mn to enhance resolution of the smaller chromosomes, corresponding to the 4—5... Fig. 2. Karyotype of 10 S. cerevisiae strains. Intact chromosomes have been separated electrophoreticaUy by size in a TAPE gel. (a), gel mn to separate most chromosomes. Large chromosomes are at the top, smaller at the bottom. Since most strains are polyploid, more than 16 bands may be observed, (b). Chromosomes from the same strains have been separated in a gel mn to enhance resolution of the smaller chromosomes, corresponding to the 4—5...
Mutation. For industrial appHcations, mutations are induced by x-rays, uv irradiation or chemicals (iiitrosoguanidine, EMS, MMS, etc). Mutant selections based on amino acid or nucleotide base analogue resistance or treatment with Nystatin or 2-deoxyglucose to select auxotrophs or temperature-sensitive mutations are easily carried out. Examples of useful mutants are strains of Candida membranefaciens, which produce L-threonine Hansenu/a anomala, which produces tryptophan or strains of Candida lipolytica that produce citric acid. An auxotrophic mutant of S. cerevisiae that requires leucine for growth has been produced for use in wine fermentations (see also Wine). This yeast produces only minimal quantities of isoamyl alcohol, a fusel oil fraction derived from leucine by the Ehrlich reaction (10,11). A mutant strain of bakers yeast with cold-sensitive metaboHsm shows increased stabiUty and has been marketed in Japan for use in doughs stored in the refrigerator (12). [Pg.387]


See other pages where Cerevisiae is mentioned: [Pg.565]    [Pg.438]    [Pg.865]    [Pg.865]    [Pg.373]    [Pg.157]    [Pg.312]    [Pg.463]    [Pg.466]    [Pg.467]    [Pg.468]    [Pg.468]    [Pg.249]    [Pg.249]    [Pg.426]    [Pg.339]    [Pg.32]    [Pg.496]    [Pg.360]    [Pg.407]    [Pg.408]    [Pg.408]    [Pg.409]    [Pg.410]    [Pg.33]    [Pg.59]    [Pg.60]    [Pg.71]    [Pg.92]    [Pg.126]    [Pg.385]    [Pg.385]    [Pg.385]    [Pg.386]    [Pg.386]    [Pg.387]    [Pg.387]    [Pg.387]    [Pg.388]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.356 ]

See also in sourсe #XX -- [ Pg.28 , Pg.203 , Pg.316 ]




SEARCH



Anticancer Saccharomyces cerevisiae

Bacteria Saccharomyces cerevisiae

Bakers’ yeast (Saccharomyces cerevisiae

Bioethanol Saccharomyces cerevisiae

Bulk mannan of S. cerevisiae)

Candida utilis Saccharomyces cerevisiae

Cell division cycle, Saccharomyces cerevisiae

Cerevisiae Fermentum

Cofactor Engineering for Xylitol Production in Recombinant Saccharomyces cerevisiae

Construction of Xylitol-Producing Recombinant Saccharomyces cerevisiae

Engineered S. cerevisiae

Engineering Food Saccharomyces cerevisiae

Eukaryotes Saccharomyces cerevisiae

Fermentation Saccharomyces cerevisiae

Fermentation, malolactic with Saccharomyces cerevisiae

Functional Genomics of Wine Yeast Saccharomyces cerevisiae

Fungicides Saccharomyces cerevisiae

Genetic analysis Saccharomyces cerevisiae

Genetic engineering Saccharomyces cerevisiae

Genome of Saccharomyces cerevisiae

Glucan, 5. cerevisiae cell wall

Gluconobacter cerevisiae

Heavy metals Saccharomyces cerevisiae

Industrial Microorganisms Saccharomyces cerevisiae and other Yeasts

Iron transport in Saccharomyces cerevisiae

Iron-Sulfur Cluster Assembly in Saccharomyces cerevisiae

Mannan of Saccharomyces cerevisiae

Megasphaera cerevisiae

Meiosis cerevisiae

Metabolic engineering Saccharomyces cerevisiae

Microorganisms Saccharomyces cerevisiae

Mutants respiratory deficient, 5. cerevisiae

Nucleus Saccharomyces cerevisiae

Of Saccharomyces cerevisiae

Organisms Saccharomyces cerevisiae

Oxygen Uptake by Saccharomyces cerevisiae

P. cerevisiae

Pediococcus cerevisiae

Pentose utilization Saccharomyces cerevisiae

Phosphorylation Saccharomyces cerevisiae

Recombinant Saccharomyces cerevisiae

S. cerevisiae

S. cerevisiae, genes

Saccaromyces cerevisiae

Sacchammyces cerevisiae

Saccharomyces S. cerevisiae

Saccharomyces cerevisia

Saccharomyces cerevisiae

Saccharomyces cerevisiae (Yeast) Mutation Assays

Saccharomyces cerevisiae Mediator subunits

Saccharomyces cerevisiae NADH dehydrogenase

Saccharomyces cerevisiae P450 enzymes

Saccharomyces cerevisiae Saccharomycodes ludwigii

Saccharomyces cerevisiae activity

Saccharomyces cerevisiae amino acid permeases

Saccharomyces cerevisiae amino acids sequence

Saccharomyces cerevisiae anaerobic growth

Saccharomyces cerevisiae antibodies

Saccharomyces cerevisiae assembly

Saccharomyces cerevisiae batch cultivations

Saccharomyces cerevisiae bioethanol production

Saccharomyces cerevisiae biogenesis

Saccharomyces cerevisiae cation transport

Saccharomyces cerevisiae cell ageing

Saccharomyces cerevisiae cell disruption

Saccharomyces cerevisiae cell factory

Saccharomyces cerevisiae cell wall

Saccharomyces cerevisiae cell wall structure

Saccharomyces cerevisiae cells

Saccharomyces cerevisiae chemical production

Saccharomyces cerevisiae chemical structure

Saccharomyces cerevisiae chitin

Saccharomyces cerevisiae chromosomes

Saccharomyces cerevisiae classification

Saccharomyces cerevisiae cloning host

Saccharomyces cerevisiae copper

Saccharomyces cerevisiae culture

Saccharomyces cerevisiae cytochrome

Saccharomyces cerevisiae diploid

Saccharomyces cerevisiae dominant strains

Saccharomyces cerevisiae ecology

Saccharomyces cerevisiae effect

Saccharomyces cerevisiae entrapment

Saccharomyces cerevisiae enzyme activity

Saccharomyces cerevisiae ergosterol

Saccharomyces cerevisiae ethanol

Saccharomyces cerevisiae ethanol formation

Saccharomyces cerevisiae ethanol production

Saccharomyces cerevisiae expression

Saccharomyces cerevisiae expression cloning

Saccharomyces cerevisiae expression vector

Saccharomyces cerevisiae figure

Saccharomyces cerevisiae fragilis

Saccharomyces cerevisiae freeze dried

Saccharomyces cerevisiae gene disruption

Saccharomyces cerevisiae gene expression

Saccharomyces cerevisiae gene mutation assay test

Saccharomyces cerevisiae genes

Saccharomyces cerevisiae genetic manipulation

Saccharomyces cerevisiae genome

Saccharomyces cerevisiae genome sequence

Saccharomyces cerevisiae genome sequencing

Saccharomyces cerevisiae glucan

Saccharomyces cerevisiae glycolysis

Saccharomyces cerevisiae glycosylation

Saccharomyces cerevisiae growth curve

Saccharomyces cerevisiae growth inhibition

Saccharomyces cerevisiae haploid

Saccharomyces cerevisiae heterologous

Saccharomyces cerevisiae hydroxy ketones

Saccharomyces cerevisiae immobilization

Saccharomyces cerevisiae inhibitors

Saccharomyces cerevisiae inoculation with

Saccharomyces cerevisiae introns

Saccharomyces cerevisiae isomerase from

Saccharomyces cerevisiae isoprenoid production

Saccharomyces cerevisiae keto esters

Saccharomyces cerevisiae kinetics

Saccharomyces cerevisiae lactic acid

Saccharomyces cerevisiae mannan

Saccharomyces cerevisiae mannans

Saccharomyces cerevisiae mannoprotein

Saccharomyces cerevisiae mating type

Saccharomyces cerevisiae mediator complex

Saccharomyces cerevisiae meiosis

Saccharomyces cerevisiae metabolism

Saccharomyces cerevisiae methylation

Saccharomyces cerevisiae molecular weight

Saccharomyces cerevisiae mutagenesis

Saccharomyces cerevisiae mutant screening

Saccharomyces cerevisiae mutants

Saccharomyces cerevisiae mutation assay

Saccharomyces cerevisiae operation

Saccharomyces cerevisiae pentose fermentation

Saccharomyces cerevisiae physiology

Saccharomyces cerevisiae polysaccharide

Saccharomyces cerevisiae polysaccharide formed

Saccharomyces cerevisiae polysaccharide from, structure

Saccharomyces cerevisiae principle

Saccharomyces cerevisiae process

Saccharomyces cerevisiae production

Saccharomyces cerevisiae proteins

Saccharomyces cerevisiae proteomics

Saccharomyces cerevisiae repression

Saccharomyces cerevisiae reproduction

Saccharomyces cerevisiae saccharification

Saccharomyces cerevisiae sample preparation

Saccharomyces cerevisiae simultaneous

Saccharomyces cerevisiae sphingolipids

Saccharomyces cerevisiae sporulation

Saccharomyces cerevisiae sterol requirement

Saccharomyces cerevisiae sterols

Saccharomyces cerevisiae strain adaptation

Saccharomyces cerevisiae structure

Saccharomyces cerevisiae sulfite reductase

Saccharomyces cerevisiae sulfur metabolism

Saccharomyces cerevisiae synthesis

Saccharomyces cerevisiae tagging proteins

Saccharomyces cerevisiae temperature effects

Saccharomyces cerevisiae transcriptional activation

Saccharomyces cerevisiae uptake

Saccharomyces cerevisiae ure2dal80 mutants

Saccharomyces cerevisiae, application

Saccharomyces cerevisiae, biopharmaceuticals

Saccharomyces cerevisiae, growth rate

Saccharomyces cerevisiae, occurrence

Saccharomyces cerevisiae, prions

Saccharomyces cerevisiae, reduction

Saccharomyces cerevisiae, sugar utilization

Saccharomyces cerevisiae, thiamine

Saccharomyces cerevisiae: beer

Saccharotnyces cerevisiae

Sacchromyces cerevisiae

Sterols in Saccharomyces cerevisiae

Succinic Saccharomyces cerevisiae

Water Bound in Weakly and Strongly Hydrated Yeast cerevisiae Cells

Whole cells Saccharomyces cerevisiae

Wine strains of S. cerevisiae

Yeast Saccharomyces cerevisiae

Yeast Saccharomyces cerevisiae Cells

Yeasts cerevisiae

Zygosaccharomyces cerevisiae

© 2024 chempedia.info