Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recombinant Saccharomyces cerevisiae

Katz, M., Frejd, T., Hahn-Haegerdal, B. and Gorwa-Grauslund, M.F. (2003) Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering, 84 (5), 573-582. [Pg.163]

Engelking, H., Pfaller, R., Wich, G. and Weuster-Botz, D. (2006) Reaction engineering studies on /3-ketoester reductions with whole cells of recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 38, 536-544. [Pg.242]

Despite the higher selectivity of enzymatic methyl transfer over chemical methylation, where toxic or hazardous reagents are often employed, such as methyl sulfonate and diazomethane, the synthetic applications of these enzymes have been largely ignored primarily as a result of high costs associated with the cofactor SAM. Recent efforts have been directed to in vivo methylation, where SAM may be regenerated inside cells. For example, methyl benzoate production was engineered in recombinant Saccharomyces cerevisiae and in vivo... [Pg.308]

Salusjarvi L, Kankainen M et al (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microbial Cell Factories 7(18) 1—16... [Pg.98]

RECOMBINANT SACCHAROMYCES CEREVISIAE AS NEW DRUG DELIVERY SYSTEM TO GUT IN VITRO VALIDATION AND ORAL FORMULATION... [Pg.565]

Blanquet, S., Meunier, J. P., Minekus, M., Marol-Bonnin, S., and Alric, M. (2003), Recombinant Saccharomyces cerevisiae expressing a P450 in artificial digestive systems A model for biodetoxication in the human digestive environment, Appl. Environ. Microbiol., 69, 2884-2892. [Pg.587]

Monique Alric, Universite d Auvergne, Clermont-Ferrand, France, Recombinant Saccharomyces Cerevisiae as New Drug Delivery System to Gut In Vitro Validation and Oral Formulation... [Pg.1378]

Dolence, J.M., Steward, L.E., Dolence, E.K., Wong, D.H., and Poulter, C.D. (2000). Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rcelp. Biochemistry 39 4096-4104. [Pg.226]

Srienc, F., Campbell, J. L., and Bailey, J. E. (1986) Flow cytometry analysis of recombinant Saccharomyces cerevisiae populations. Cytometry 7(2), 132-141. [Pg.300]

Barthel T, Kula MR. Studies on the extraction of DesPro(2)-VaI15-Leul7-aprotinin from the culture broth of a recombinant Saccharomyces cerevisiae. Bioseparation, 1992 3(6) 365-372. [Pg.889]

Turner B G, Avgerinos G C, Melnick L M, Moir D T (1991). Optimization of pro-urokinase secretion from recombinant Saccharomyces cerevisiae. Biotechnol. Bioengin. 37 869-875. [Pg.41]

FIGURE 5.5 Principle of measurement using recombinant Saccharomyces cerevisiae [38]. [Pg.145]

Reiser SE, Mitsky TA, Gruys KJ (2000) Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli. Appl Microbiol Biotechnol 53 209-218 Robert J, Marchesini S, Delessert S, Poirier Y (2005) Analysis of the beta-oxidation of tians-unsaturated fatty acid in recombinant Saccharomyces cerevisiae expressing a peroxisomal PHA synthase reveals the involvement of a reductase-dependent pathway. Biochim Biophys Acta 1734 169-177... [Pg.210]

Eksteen, J. M., Van Rensburg, P, Cordero Otero, R. R., Pretorius, I. S. (2003). Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnology and Bioengineering, 84,639-646. [Pg.61]

Jeon E, Hyeon JE, Eun LS, Park BS, Kim SW, Lee J, Han SO. (2009). Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera p-glucosidase. FEMS Microbiol Lett, 301, 130-136. [Pg.222]

Karhumaa K, Sanchez RG, Hahn-Hagerdal B, Gorwa-Grauslund ME. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact, 6, 5. [Pg.222]

Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. (2009a). Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol, 82, 1037-1047. [Pg.223]

Construction of Xylitol-Producing Recombinant Saccharomyces cerevisiae... [Pg.508]

TABLE 18.3 Kinetic Parameters for Microbial Production of Xylitol by Recombinant Saccharomyces cerevisiae... [Pg.511]

Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, Ryu YW, Seo JH. (2004). Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme Microb Tech, 35, 545-549. [Pg.516]

Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH. (2002). Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Tech, 30, 809-816. [Pg.516]

Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, Ker nen S. (1991). Xylitol production by recombinant Saccharomyces cerevisiae. Nat Biotechnol, 9, 1090-1095. [Pg.516]

Kim MD, Rhee SK, Seo JH. (2001). Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal 8-integration. / 5iofechnoZ, 85, 41-48. [Pg.517]

Kim MD, Jeun YS, Kim SG, Ryu YW, Seo JH. (2002b). Comparison of xyhtol production in recombinant Saccharomyces cerevisiae strains harboring XYLl gene of Pichia stipitis and GRES gene of S. cerevisiae. Enzyme Microb Tech, 31, 862-866. [Pg.517]

Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH. (2006). Elevation of glucose 6-phosphate dehydrogenase activity increases xyhtol production in recombinant Saccharomyces cerevisiae. J Mol Catal B-Enzym, 43, 86-89. [Pg.517]

Lee SH, Kodak T, Park YC, Seo JH. (2012). Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J Biotechnol, 158, 184-191. [Pg.517]

Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science 2007 315 801-4. JinYS, Alper H,YangYT, Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 2005 71 8249-56. [Pg.385]

Parachin, N.S., Bergdahl, B., van Niel, E.W.J., and Gorwa-Grauslund, M.F. (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng., 13, 508-517. [Pg.568]

Jin, Y.S., Ni, H.Y., Laplaza, J.M, and Jeffries, X.W, (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ. Microbiol, 69, 495-503. [Pg.569]


See other pages where Recombinant Saccharomyces cerevisiae is mentioned: [Pg.238]    [Pg.42]    [Pg.152]    [Pg.388]    [Pg.1534]    [Pg.126]    [Pg.244]    [Pg.220]    [Pg.199]    [Pg.183]   


SEARCH



Cerevisiae

Cofactor Engineering for Xylitol Production in Recombinant Saccharomyces cerevisiae

Construction of Xylitol-Producing Recombinant Saccharomyces cerevisiae

Recombinant Saccharomyces

Saccharomyces cerevisia

Saccharomyces cerevisiae

© 2024 chempedia.info