Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additional Uses of Soap

So-called self-emulgating mono/diglycerides are made by addition of small amounts of - soap. Thus, their lipophilic character (W/0 emulsifier) is changed to an 0/W system. The use of soaps in g. used in food applications is restricted by legal regulations in different countries. [Pg.127]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Nicotine is used as a contact insecticide for aphids attacking fmits, vegetables, and ornamentals, and as a fumigant for greenhouse plants and poultry mites. Nicotine sulfate is safer and more convenient to handle and the free alkaloid is rapidly Hberated by the addition of soap, hydrated lime, or ammonium hydroxide to the spray solution. Nicotine sprays commonly contain 0.05—0.06% nicotine, and nicotine dusts, 1—2% nicotine. [Pg.269]

A considerable quantity of oil can be extracted from waste material from shelling and processing plants, eg, the inedible kernels rejected during shelling and fragments of kernels recovered from shells. About 300 t of pecan oil and 300—600 t of English walnut oil are produced aimuaHy from such sources. The oil is refined and used for edible purposes or for the production of soap the cake is used in animal feeds (see Feeds and feed additives). Fmit-pit oils, which closely resemble and are often substituted for almond oil, are produced on a large scale for cosmetic and pharmaceutical purposes (143). For instance, leaves, bark, and pericarp of walnut may be used to manufacture vitamin C, medicines, dyes and tannin materials (144). [Pg.278]

Monobutylamines are easily soluble in water and hydrocarbons and can generally be steam distilled. These properties lead to uses in soaps for water and oil emulsions, and as corrosion inhibitors in steam boiler appHcations (see Corrosion and corrosion inhibitors Emulsions). Morpholine is also extensively used as a corrosion inhibitor in steam boiler systems. In addition, it is widely used as an intermediate in the production of delayed-action mbber accelerators. [Pg.199]

The quaHty, ie, level of impurities, of the fats and oils used in the manufacture of soap is important in the production of commercial products. Fats and oils are isolated from various animal and vegetable sources and contain different intrinsic impurities. These impurities may include hydrolysis products of the triglyceride, eg, fatty acid and mono/diglycerides proteinaceous materials and particulate dirt, eg, bone meal and various vitamins, pigments, phosphatides, and sterols, ie, cholesterol and tocopherol as weU as less descript odor and color bodies. These impurities affect the physical properties such as odor and color of the fats and oils and can cause additional degradation of the fats and oils upon storage. For commercial soaps, it is desirable to keep these impurities at the absolute minimum for both storage stabiHty and finished product quaHty considerations. [Pg.150]

Minor ingredients include excess fatty acids, preservatives, and potentially other synthetic surfactants. Alternatively, mixing can be achieved through the use of in-line static mixers, with the accurate addition of the minors into a flowing stream of the wet soap. [Pg.156]

Minor and potential new uses include flue-gas desulfurization (44,45), silver-cleaning formulations (46), thermal-energy storage (47), cyanide antidote (48), cement additive (49), aluminum-etching solutions (50), removal of nitrogen dioxide from flue gas (51), concrete-set accelerator (52), stabilizer for acrylamide polymers (53), extreme pressure additives for lubricants (54), multiple-use heating pads (55), in soap and shampoo compositions (56), and as a flame retardant in polycarbonate compositions (57). Moreover, precious metals can be recovered from difficult ores using thiosulfates (58). Use of thiosulfates avoids the environmentally hazardous cyanides. [Pg.30]

Trisodium phosphate [7601-54-9] trisodium orthophosphate, Na PO, is an important constituent of hard-surface cleaners including those for ceramic, metal, or painted surfaces. It may be used with soaps, surfactants, or other alkaHes. It precipitates many heavy-metal ions but does not sequester to form soluble chelates. It is thus a precipitant builder and additionally an alkaH. [Pg.527]

As it stands, eqn. (7.7) contains too many unknowns. But there is one additional piece of information that we can use. The interfacial energies, Ysl> Yes 7cl ct as surface tensions in just the way that a soap film has both a surface energy and a surface tension. This means that the mechanical equilibrium around the edge of the nucleus can be described by the triangle of forces... [Pg.71]

In the early days of the commercial development of PVC, emulsion polymers were preferred for general purpose applications. This was because these materials exist in the form of the fine primary particles of diameter of the order of 0.1-1.0 p,m, which in the case of some commercial grades aggregate into hollow secondary particles or cenospheres with diameters of 30-100 p,m. These emulsion polymer particles have a high surface/volume ratio and fluxing and gelation with plasticisers is rapid. The use of such polymers was, however, restricted because of the presence of large quantities of soaps and other additives necessary to emulsion polymerisation which adversely affect clarity and electrical insulation properties. [Pg.321]

The raw materials for the manufacture of soap, the alkali salts of saturated and unsaturated C10-C20 carboxylic acids, are natural fats and fatty oils, especially tallow oil and other animal fats (lard), coconut oil, palm kernel oil, peanut oil, and even olive oil. In addition, the tall oil fatty acids, which are obtained in the kraft pulping process, are used for soap production. A typical formulation of fats for the manufacture of soap contains 80-90% tallow oil and 10-20% coconut oil [2]. For the manufacture of soft soaps, the potassium salts of fatty acids are used, as are linseed oil, soybean oil, and cottonseed oil acids. High-quality soap can only be produced by high-quality fats, independent of the soap being produced by saponification of the natural fat with caustic soda solution or by neutralization of distilled fatty acids, obtained by hydrolysis of fats, with soda or caustic soda solutions. Fatty acids produced by paraffin wax oxidation are of inferior quality due to a high content of unwanted byproducts. Therefore in industrially developed countries these fatty acids are not used for the manufacture of soap. This now seems to be true as well for the developing countries. [Pg.2]

The lime soap dispersing properties are very important for the dispersal of Ca soap, which is used to achieve among others, lower foam [60,64,66,181]. In addition, nontoxicity as well as good dermatological properties and biodegradability have been factors in the increased use of ether carboxylates [60,66]. [Pg.342]


See other pages where Additional Uses of Soap is mentioned: [Pg.159]    [Pg.159]    [Pg.3113]    [Pg.3113]    [Pg.159]    [Pg.159]    [Pg.159]    [Pg.3113]    [Pg.3113]    [Pg.159]    [Pg.528]    [Pg.204]    [Pg.879]    [Pg.72]    [Pg.113]    [Pg.528]    [Pg.200]    [Pg.1141]    [Pg.2035]    [Pg.95]    [Pg.204]    [Pg.2150]    [Pg.448]    [Pg.451]    [Pg.339]    [Pg.186]    [Pg.3]    [Pg.152]    [Pg.152]    [Pg.153]    [Pg.153]    [Pg.154]    [Pg.154]    [Pg.157]    [Pg.158]    [Pg.305]    [Pg.322]    [Pg.449]    [Pg.133]    [Pg.328]   


SEARCH



Soap additives

© 2024 chempedia.info