Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strong Lewis acid

My work on long-lived (persistent) carbocations dates back to the late 1950s at Dow and resulted in the first direct observation of alkyl cations. Subsequently, a wide spectrum of carbocations as long-lived species was studied using antimony pentafluoride as an extremely strong Lewis acid and later using other highly acidic (superacidic) systems. [Pg.75]

Finding snch acids (called snperacids ) turned out to be the key to obtaining stable, long-lived alkyl cations and, in general, carbocations. If any deprotonation were still to take place, the formed alkyl cation (a strong Lewis acid) would immediately react with the formed olefin (a good TT-base), leading to the mentioned complex reactions. [Pg.76]

With the catalysis of strong Lewis acids, such as tin(IV) chloride, dipyrromethenes may aiso be alkylated. A very successful porphyrin synthesis involves 5-bromo-S -bromomethyl and 5 -unsubstituted 5-methyl-dipyrromethenes. In the first alkylation step a tetrapyrrolic intermediate is formed which cyclizes to produce the porphyrin in DMSO in the presence of pyridine. This reaction sequence is useful for the synthesis of completely unsymmetrical porphyrins (K.M. Smith, 1975). [Pg.256]

Under acidic conditions, furfuryl alcohol polymerizes to black polymers, which eventually become crosslinked and insoluble in the reaction medium. The reaction can be very violent and extreme care must be taken when furfuryl alcohol is mixed with any strong Lewis acid or Brn nstad acid. Copolymer resins are formed with phenoHc compounds, formaldehyde and/or other aldehydes. In dilute aqueous acid, the predominant reaction is a ring opening hydrolysis to form levulinic acid [123-76-2] (52). In acidic alcohoHc media, levulinic esters are formed. The mechanism for this unusual reaction in which the hydroxymethyl group of furfuryl alcohol is converted to the terminal methyl group of levulinic acid has recendy been elucidated (53). [Pg.79]

Uses. Fluorosulfuric acid serves as catalyst in the alkylation (qv) of branched-chain paraffins (53—58) and aromatic compounds (59), and in the polymeriza tion of monoolefins (60) and rosin (61). Addition of strong Lewis acids, such as SbF, TaF, and NbF, to fluorosulfuric acid markedly increases... [Pg.249]

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

Stabilization Mechanism. Zinc and cadmium salts react with defect sites on PVC to displace the labHe chloride atoms (32). This reaction ultimately leads to the formation of the respective chloride salts which can be very damaging to the polymer. The role of the calcium and/or barium carboxylate is to react with the newly formed zinc—chlorine or cadmium—chlorine bonds by exchanging ligands (33). In effect, this regenerates the active zinc or cadmium stabilizer and delays the formation of significant concentrations of strong Lewis acids. [Pg.549]

An additional effect of the use of an organic medium in the catalyst preparation is creation of mote defects in the crystalline lattice when compared to a catalyst made by the aqueous route (123). These defects persist in the active phase and are thought to result in creation of strong Lewis acid sites on the surface of the catalysts (123,127). These sites ate viewed as being responsible for the activation of butane on the catalyst surface by means of abstraction of a hydrogen atom. [Pg.454]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

Antimony pentafluoride is a strong Lewis acid and a good oxidizing and fluorinating agent. Its behavior as a Lewis acid leads to the formation of numerous simple and complex adducts. It reacts vigorously with water to form a clear solution from which antimony pentafluoride dihydrate [65277-49-8], SbF 2H2O, may be isolated. This is probably not a tme hydrate, but may well be better formulated as [H O] [SbF OH]. [Pg.204]

The boron tnhahdes are strong Lewis acids, however, the order of relative acid strengths, BI > > BCl > BF, is contrary to that expected... [Pg.222]

Aromatic Ring Reactions. In the presence of an iodine catalyst chlorination of benzyl chloride yields a mixture consisting mostly of the ortho and para compounds. With strong Lewis acid catalysts such as ferric chloride, chlorination is accompanied by self-condensation. Nitration of benzyl chloride with nitric acid in acetic anhydride gives an isomeric mixture containing about 33% ortho, 15% meta, and 52% para isomers (27) with benzal chloride, a mixture containing 23% ortho, 34% meta, and 43% para nitrobenzal chlorides is obtained. [Pg.59]

A direct attack on the diazirine ring was observed only by use of almost concentrated sulfuric acid or strong Lewis acids, e.g. aluminum chloride in the case of (208). Some hydrazine was found together with cyclohexanone and cyclohexanol after decomposition of the spirodiazirine (189) with 80% sulfuric acid (B-67MI50800). [Pg.222]

A good deal of experimental care is often required to ensure that the product mixture at the end of a Friedel-Crafts reaction is determined by kinetic control. The strong Lewis acid catalysts can catalyze the isomerization of alkylbenzenes, and if isomerization takes place, the product composition is not informative about the position selectivity of electrophilic attack. Isomerization increases the amount of the meta isomer in the case of dialkylbenzenes, because this isomer is thermodynamically the most stable. ... [Pg.583]

The KF-S reaction presumably involves attack of a fluonnated caibanion on sulfur, whereas the S-Sbp5 reaction may involve electrophilic attack by a cationic sulfur species on the olefin under the strong Lewis acid conditions Electrophilic attack on a fluonnated olefin may also account for formation of a perfluorinated sulfide from reaction of bis(pentafluorophenyl)disulfide with hexafluoropropylene under superacid conditions [IS5] (equation 28)... [Pg.75]

Covalent fluondes of group 3 and group 5 elements (boron, tin, phosphorus, antimony, etc ) are widely used m organic synthesis as strong Lewis acids Boron trifluoride etherate is one of the most common reagents used to catalyze many organic reactions. A representative example is its recent application as a catalyst in the cycloadditions of 2-aza-l,3-dienes with different dienophiles [14] Boron trifluoride etherate and other fluonnated Lewis acids are effective activators of the... [Pg.944]

Fig. 8.7 The different transition-state shapes for the carbo-Diels-Alder reaction in the pressence of a strong Lewis acid (left) - a three center interaction - and a weak Lewis acid (right) [12]... Fig. 8.7 The different transition-state shapes for the carbo-Diels-Alder reaction in the pressence of a strong Lewis acid (left) - a three center interaction - and a weak Lewis acid (right) [12]...
The use of catalysts for a Diels-Alder reaction is often not necessary, since in many cases the product is obtained in high yield in a reasonable reaction time. In order to increase the regioselectivity and stereoselectivity (e.g. to obtain a particular endo- or exo-product), Lewis acids as catalysts (e.g. TiCU, AICI3, BF3-etherate) have been successfully employed." The usefulness of strong Lewis acids as catalysts may however be limited, because they may also catalyze polymerization reactions of the reactants. Chiral Lewis acid catalysts are used for catalytic enantioselective Diels-Alder reactions. ... [Pg.93]

An excess of Grignard reagent (4 equivalents) or the addition of strong Lewis acids promotes the preference for chelation-controlled. vvn-products (Table 20)22 21 u. In addition, the use of diethyl ether or dichloromethane instead of tetrahydrofuran improves the yield of the chelation-derived syn-product24. [Pg.87]

Essentially all allylsilanes (M = SiR3, Section D.l.3.3.3.5.) with the exception of fluorosil-iconates11 and most of the trialkyl(allyl)stannancs (Section D.l. 3.3.3.6.), which have only very weak Lewis acidic properties, require a strong Lewis acid to trigger the reaction with a carbonyl compound by the preceding formation of an x-oxycarbenium ion, which attacks the allylic compound in an ionic open-chain pathway. These Lewis acid catalyzed carbonyl additions offer new possibilities for the control of the simple and induced diastereoselectivity12. [Pg.209]

Bisamides (or biscarbamates), which are easily obtainable from the reaction of an aldehyde with two equivalents of a primary amide (carbamate), are converted into the corresponding A-acyliminium ions on heating, often in the presence of strong (Lewis) acids or acylating compounds1 3. [Pg.815]


See other pages where Strong Lewis acid is mentioned: [Pg.65]    [Pg.65]    [Pg.163]    [Pg.76]    [Pg.96]    [Pg.1115]    [Pg.467]    [Pg.560]    [Pg.549]    [Pg.366]    [Pg.37]    [Pg.72]    [Pg.74]    [Pg.205]    [Pg.116]    [Pg.397]    [Pg.481]    [Pg.2002]    [Pg.210]    [Pg.234]    [Pg.961]    [Pg.1115]    [Pg.169]    [Pg.377]    [Pg.703]    [Pg.275]    [Pg.323]    [Pg.32]    [Pg.551]    [Pg.91]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Acids strong

Strongly acidic

© 2024 chempedia.info