Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed metal stabilizers

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

Cost bilizers. In most cases the alkyl tin stabilizets ate particularly efficient heat stabilizers for PVC without the addition of costabilizers. Many of the traditional coadditives, such as antioxidants, epoxy compounds, and phosphites, used with the mixed metal stabilizer systems, afford only minimal benefits when used with the alkyl tin mercaptides. Mercaptans are quite effective costabilizets for some of the alkyl tin mercaptides, particularly those based on mercaptoethyl ester technology (23). Combinations of mercaptan and alkyl tin mercaptide ate currendy the most efficient stabilizers for PVC extmsion processes. The level of tin metal in the stabilizer composition can be reduced by up to 50% while maintaining equivalent performance. Figure 2 shows the two-roU mill performance of some methyl tin stabilizers in a PVC pipe formulation as a function of the tin content and the mercaptide groups at 200°C. [Pg.548]

Table 2. U.S. Producers and Trade Names of Alkyltin Stabilizers and Mixed Metal Stabilizers ... Table 2. U.S. Producers and Trade Names of Alkyltin Stabilizers and Mixed Metal Stabilizers ...
Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Cost bilizers. The variety of known costabiHzers for the mixed metal stabilizers is a very long listing. There are, however, a relatively small number of commercially used costabiHzers. Some of these additives can also be added by the PVC compounder or processor ia addition to the stabilizer package to further enhance the desired performance characteristics. The epoxy compounds and phenoHc antioxidants are among the most commonly used costabiHzers with the mixed metal stabilizers. [Pg.550]

Epo>y Compounds. Epoxidized soya oil (ESO) is the most widely used epoxy-type additive and is found ia most mixed metal stabilized PVC formulations at 1.0—3.0 phr due to its versatiHty and cost effectiveness. Other usefiil epoxy compounds are epoxidized glycerol monooleate, epoxidized linseed oil, and alkyl esters of epoxidized tall oil fatty acid. [Pg.550]

A.ntioxidants. PhenoHc antioxidants, added at about 0.1—0.5 phr, are usually chosen from among butylated hydroxytoluene [128-37-0] (BHT), and Nnonylphenol [104-40-5] for Hquid stabilizer formulations and bisphenol A [80-05-7] (2,2-bis-(/)-hydroxyphenyl)propane) for the soHd systems. Low melting thioesters, dilauryl thiodipropionate [123-28-4] (DLTDP) or distearyl thiodipropionate [693-36-7] (DSTDP) are commonly added along with the phenoHcs to enhance their antioxidant performance. Usually a 3 1 ratio of thiodipropionate to phenoHc antioxidant provides the desired protection. Most mixed metal stabilizer products contain the antioxidant iagredient. [Pg.550]

Phosphites. Tertiary phosphites are also commonly used and are particularly effective ia most mixed metal stabilizers at a use level of 0.25—1.0 phr. They can take part ia a number of different reactions duting PVC processing they can react with HCl, displace activated chlorine atoms on the polymer, provide antioxidant functionaHty, and coordinate with the metals to alter the Lewis acidity of the chloride salts. Typical examples of phosphites are triphenyl phosphite [101 -02-0], diphenyl decyl phosphite [3287-06-7], tridecyl phosphite [2929-86-4], and polyphosphites made by reaction of PCl with polyols and capping alcohols. The phosphites are often included in commercial stabilizer packages. [Pg.550]

Hydrotalcite. Synthetic hydrotalcite minerals are gaining commercial acceptance for thein abiHty to costabiHze PVC ia the presence of other primary stabilizers (see Table 2). The performance of the mixed metal stabilizers are particularly boosted when an equal part level, about 2—3 phr, of hydrotalcite is added to the PVC formulation. These minerals function by trapping HCl within the layered lattice arrangement of atoms. The formula. [Pg.550]

Economics. As with the alkyl tin stabilizers, the market pricing of the mixed metal stabilizers tend to be directed by the particular appHcation. The calcium—zinc and barium—cadmium packages are typically used at 2.0—4.0 parts per hundred of PVC resin (phr) in the formulation. These completely formulated products are sold for 2.50— 4.40/kg for the Hquid products and 3.20— 6.50/kg for the soHds and pastes. The higher efficiency products aimed at rigid appHcations tend toward the higher end of the cost range. [Pg.551]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

However, most recentiy, mixed metal stabilizers are being introduced into this area. Whereas some mixed metal stabilizers are used in rigid apphcations, it is difficult for these newer materials to compete with lead and tin based stabilizers on a cost/efficiency basis. These materials find their largest apphcations in flexible compounds, especially those requiring good stabihty to uv exposure. [Pg.6]

Phenolic antioxidants - [ALKYLPHENOLS] (Vol 2) -m mixed metal stabilized PVC [HEAT STABILIZERS] (Vol 12)... [Pg.746]


See other pages where Mixed metal stabilizers is mentioned: [Pg.64]    [Pg.297]    [Pg.367]    [Pg.639]    [Pg.746]    [Pg.753]    [Pg.790]    [Pg.928]    [Pg.549]    [Pg.550]    [Pg.550]    [Pg.551]    [Pg.551]    [Pg.334]    [Pg.334]    [Pg.549]    [Pg.550]    [Pg.550]    [Pg.550]    [Pg.550]    [Pg.551]    [Pg.551]    [Pg.64]    [Pg.297]    [Pg.367]    [Pg.639]    [Pg.753]   
See also in sourсe #XX -- [ Pg.74 ]

See also in sourсe #XX -- [ Pg.107 , Pg.108 , Pg.109 , Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 ]




SEARCH



Metallic stabilizers

Metals stabilization

Mixed metal

Mixed metal stabilizers liquids

Mixed metal stabilizers powders

Mixes stability

Stabilization of Metal d-Electrons in Mixed-Ligand Complexes

© 2024 chempedia.info