Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers common

Table 1.6 Values of 1q and b for Some Common Polymers and lo/b Ratios Which Measure Steric Hindrance via Eq. (1.61)... Table 1.6 Values of 1q and b for Some Common Polymers and lo/b Ratios Which Measure Steric Hindrance via Eq. (1.61)...
The special appeal of this approach is that it allows the heat of mixing to be estimated in terms of a single parameter assigned to each component. This considerably simplifies the characterization of mixing, since m components (with m 6 values) can be combined into m(m - l)/2 binary mixtures, so a considerable data reduction follows from tabulating 6 s instead of AH s. Table 8.2 is a list of CED and 6 values for several common solvents, as well as estimated 6 values for several common polymers. [Pg.526]

Table 8.2 Values of the Cohesive Energy Density (CED) for Some Common Solvents and the Solubility Parameter 6 for These Solvents and Some Common Polymers... Table 8.2 Values of the Cohesive Energy Density (CED) for Some Common Solvents and the Solubility Parameter 6 for These Solvents and Some Common Polymers...
The use of flame retardants came about because of concern over the flammabiUty of synthetic polymers (plastics). A simple method of assessing the potential contribution of polymers to a fire is to examine the heats of combustion, which for common polymers vary by only about a factor of two (1). Heats of combustion correlate with the chemical nature of a polymer whether the polymer is synthetic or natural. Concern over flammabiUty should arise via a proper risk assessment which takes into account not only the flammabiUty of the material, but also the environment in which it is used. [Pg.465]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

Polymers, too, creep - many of them do so at room temperature. As we said in Chapter 5, most common polymers are not crystalline, and have no well-defined melting point. For them, the important temperature is the glass temperature, Tq, at which the Van der Waals bonds solidify. Above this temperature, the polymer is in a leathery or rubbery state, and creeps rapidly under load. Below, it becomes hard (and... [Pg.171]

The lUPAC systematic name for poly(vinyl acetate) is poly-(l-acetoxy-ethylene) and that for poly(vinyl alcohol) is poly-(l-hydroxyethylene). As with other common polymers the lUPAC names are not in general use. [Pg.386]

Some corrosion-resistant materials for concentrated aqueous solutions and acids are given in Tables 4.10 and 4.11. The resistance of some common polymers to organic solvents is summarized in Table 4.12. The attack process is accelerated by an increase in temperature. The chemical resistance of a range of common plastics is summarized in Table 4.13. [Pg.55]

Fig. 4. Solubility parameters of common polymers and classes of tackifiers [77]. Fig. 4. Solubility parameters of common polymers and classes of tackifiers [77].
Polymer. The polymer determines the properties of the hot melt variations are possible in molar mass distribution and in the chemical composition (copolymers). The polymer is the main component and backbone of hot-melt adhesive blend it gives strength, cohesion and mechanical properties (filmability, flexibility). The most common polymers in the woodworking area are EVA and APAO. [Pg.1075]

Synthetic large molecules are made by joining together thousands of small molecular units known as monomers. The process of joining the molecules is called polymerisation and the number of these units in the long molecule is known as the degree of polymerisation. The names of many polymers consist of the name of the monomer with the suffix poly-. For example, the polymers polypropylene and polystryene are produced from propylene and styrene respectively. Names, and symbols for common polymers are given in Appendix F. [Pg.2]

So far the structure of polymers has been described with reference to the material with the simplest molecular structure, i.e. polyethylene. The general principles described also apply to other polymers and the structures of several of the more common polymers are given below. [Pg.415]

Select mobile phases for HPSEC based on their ability to dissolve the sample and their compatibility with the column. Zorbax PSM columns are compatible with a wide variety of organic and aqueous mobile phases (Table 3.4), but analysts should avoid aqueous mobile phases with a pH greater than 8.5. As mentioned earlier, select mobile phases that minimize adsorption between samples and silica-based packings. Sample elution from the column after the permeation volume indicates that adsorption has occurred. If adsorption is observed or suspected, select a mobile phase that will be more strongly adsorbed onto the silica surface than the sample. For example, N,N-dimethyl-formamide (DMF) is often used for polyurethanes and polyacrylonitrile because it eliminates adsorption and dissolves the polymers. When aqueous mobile phases are required, highly polar macromolecules such as Carbowax can be used to coat the silica surface and eliminate adsorption. Table 3.5 provides a list of recommended mobile-phase conditions for some common polymers. [Pg.82]

One after the other, examine the structures of a number of common polymers. For each, draw the repeating unit, and indicate the chain length (number of repeating units in the strand). Note Each end of a polymer strand has been capped by adding extra atoms. Do not count these atoms as repeating units. Also, use the smallest possible repeating unit. [Pg.249]

The classical representation of a homopolymer chain, in which the end groups are disregarded and only one monomer residue is considered, allows no possibility for structural variation. However, possibilities for stercoscqucnce isomerism arise as soon as the monomer residue is considered in relation to its neighbors and the substituents X and Y are different. The chains have tacticity (Section 4,2.1). Experimental methods for tacticity determination are summarized in 4.2.2 and the tacticity of some common polymers is considered in 4.2.3. [Pg.168]

The development of a rechargeable polymer battery is being pursued worldwide. Its attraction lies in the specific weight of polymers, which is considerably lower than that of ordinary inorganic materials, as well as potential environmental benefits. In principle there are three different types of battery. The active polymer electrode can be used either as cathode (cell types 1, 2), or as anode (cell type 3), or as both cathode and anode (cell type 4) (Fig. 14). As the most common polymer materials are usually only oxidizable, recent research has concentrated on developing cells with a polymer cathode and a metal anode. [Pg.30]

Detection is also frequently a key issue in polymer analysis, so much so that a section below is devoted to detectors. Only two detectors, the ultra-violet-visible spectrophotometer (UV-VIS) and the differential refractive index (DRI), are commonly in use as concentration-sensitive detectors in GPC. Many of the common polymer solvents absorb in the UV, so UV detection is the exception rather than the rule. Refractive index detectors have improved markedly in the last decade, but the limit of detection remains a common problem. Also, it is quite common that one component may have a positive RI response, while a second has a zero or negative response. This can be particularly problematic in co-polymer analysis. Although such problems can often be solved by changing or blending solvents, a third detector, the evaporative light-scattering detector, has found some favor. [Pg.333]

Table 3.34 Solubility parameters (S, MPa122) of some common polymers... Table 3.34 Solubility parameters (S, MPa122) of some common polymers...
Table 3.50 Possible solvent/nonsolvent combinations for common polymers... Table 3.50 Possible solvent/nonsolvent combinations for common polymers...
Applications Applications of UV/VIS spectrophotometry can be found in the areas of extraction monitoring and control, migration and blooming, polymer impregnation, in-polymer analysis, polymer melts, polymer-bound additives, purity determinations, colour body analysis and microscopy. Most samples measured with UV/VIS spectroscopy are in solution. However, in comparison to IR spectroscopy additive analysis in the UV/VIS range plays only a minor role as only a limited class of compounds exhibits specific absorption bands in the UV range with an intensity proportional to the additive concentration. Characteristic UV absorption bands of various common polymer additives are given in Scheirs [24],... [Pg.307]

The common polymers are composed of a small number of elements whose XP spectra are simple (generally C Is plus one or two peaks from Ols, Nls, FIs and Cl 2s, 2p). Common contaminants contain additional elements such as S, P, Si, A1 and heavy metals, and the presence of these elements, even in low concentrations, can be detected very easily. Polymer surface modification is an area in which XPS has been fruitfully applied, notably in the study of commercial pretreatments aimed at improving wettability and general adhesion characteristics. [Pg.37]

Many common polymers, polymeric additives and lubricants oxidise so rapidly after impact in liquid oxygen that they are hazardous. Of those tested, only acrylonitrile-butadiene, poly(cyanoethylsiloxane), poly(dimethylsiloxane) and polystyrene exploded after impact of 6.8-95 J intensity (5-70 ft.lbf). All plasticisers (except dibutyl sebacate) and antioxidants examined were very reactive. A theoretical treatment of rates of energy absorption and transfer is included [1], Previously, many resins and lubricants had been examined similarly, and 35 were found acceptable in liquid oxygen systems [2],... [Pg.1857]

Disorder of Nanocomposites and Common Polymers. If one compares the distortion parameters of particular nanocomposites with those of common polymer materials, the relative standard deviations are generally smaller by 1 order of magnitude. More than 30 layers are correlated to each other, whereas the correlation in commercial polymer materials is generally ranging shorter than 4 layers. [Pg.203]

Nafion, a perfluorinated sulfonated polymer, is a typical example of an ion-exchangeable resin with high promise as a catalyst support. Its properties are significantly different from those of common polymers (stability towards strong bases, and strong oxidizing and reducing acids and thermal stability up to at least 120 °C if the counter ion is a proton, and up to 200-235 °C if it is a... [Pg.450]


See other pages where Polymers common is mentioned: [Pg.465]    [Pg.436]    [Pg.476]    [Pg.717]    [Pg.434]    [Pg.649]    [Pg.818]    [Pg.1]    [Pg.174]    [Pg.123]    [Pg.186]    [Pg.683]    [Pg.259]    [Pg.330]    [Pg.478]    [Pg.524]    [Pg.383]    [Pg.278]    [Pg.139]    [Pg.125]    [Pg.117]    [Pg.168]    [Pg.439]   
See also in sourсe #XX -- [ Pg.173 , Pg.175 , Pg.236 , Pg.240 ]




SEARCH



Abbreviations for some Common Polymers

Additives that Enhance Degradation in Common Polymers

Biodegradability of Common Polymers

Biodegradable polymer common classes

Biodegradable polymers common

Chemical common polymers

Common Chain-Growth Polymers

Common Thermosetting Polymers

Common interests with polymer

Common interests with polymer chemistry

Common water soluble polymers used as emulsifiers in foods

Crystal structure common polymers

Crystal structures of some common polymers

Perfluorosulfonic acid common polymers

Polymer common names

Polymer manufacturing, common problems

Polymer manufacturing, common problems during

Polymers containing common bisphenol

Solvents for Common Polymers

Structure of Some Common Polymers

Thermal degradation of common chain-growth polymers

Thermal degradation of common step-growth polymers

Tissue engineering scaffolds common polymers

© 2024 chempedia.info