Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Barium-cadmium

Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Economics. As with the alkyl tin stabilizers, the market pricing of the mixed metal stabilizers tend to be directed by the particular appHcation. The calcium—zinc and barium—cadmium packages are typically used at 2.0—4.0 parts per hundred of PVC resin (phr) in the formulation. These completely formulated products are sold for 2.50— 4.40/kg for the Hquid products and 3.20— 6.50/kg for the soHds and pastes. The higher efficiency products aimed at rigid appHcations tend toward the higher end of the cost range. [Pg.551]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

Organophosphoms compounds, primarily phosphonic acids, are used as sequestrants, scale inhibitors, deflocculants, or ion-control agents in oil wells, cooling-tower waters, and boiler-feed waters. Organophosphates are also used as plasticizers and flame retardants in plastics and elastomers, which accounted for 22% of PCl consumed. Phosphites, in conjunction with Hquid mixed metals, such as calcium—zinc and barium—cadmium heat stabilizers, function as antioxidants and stabilizer adjutants. In 1992, such phosphoms-based chemicals amounted to slightly more than 6% of all such plastic additives and represented 8500 t of phosphoms. Because PVC production is expected to increase, the use of phosphoms additive should increase 3% aimually through 1999. [Pg.383]

Antimony tris(isooctylthioglycolate) has found use in pipe formulations at low levels. Its disadvantage is that it cross-stains with sulfide-based tin stabilizers (122). Barium—zinc stabilizers have found use in plasticized compounds, replacing barium—cadmium stabilizers. These are used in mol dings, profiles, and wire coatings. Cadmium use has decreased because of environmental concerns surrounding certain heavy metals. [Pg.503]

Neodecanoic acid is also used as the carrier for metals in poly(vinyl chloride) heat stabilizers (qv). Metals used in this appHcation include barium, cadmium, and zinc. Tin as the neodecanoate salt has also been claimed as a heat stabilizer for maleic anhydride (97). [Pg.106]

The most common toxic metals in industrial use are cadmium, chromium, lead, silver, and mercury less commonly used are arsenic, selenium (both metalloids), and barium. Cadmium, a metal commonly used in alloys and myriads of other industrial uses, is fairly mobile in the environment and is responsible for many maladies including renal failure and a degenerative bone disease called "ITA ITA" disease. Chromium, most often found in plating wastes, is also environmentally mobile and is most toxic in the Cr valence state. Lead has been historically used as a component of an antiknock compound in gasoline and, along with chromium (as lead chromate), in paint and pigments. [Pg.177]

The most commonly used stabilizers are barium, cadmium, zinc, calcium and cobalt salts of stearic acid phosphorous acid esters epoxy compounds and phenol derivatives. Using stabilizers can improve the heat and UV light resistance of the polymer blends, but these are only two aspects. The processing temperature, time, and the blending equipment also have effects on the stability of the products. The same raw materials and compositions with different blending methods resulted in products with different heat stabilities. Therefore, a thorough search for the optimal processing conditions must be done in conjunction with a search for the best composition to get the best results. [Pg.140]

Heat stabilisers for PVC act by HC1 scavenging and include organotins, mixed metal salt blends, and lead compounds. The latter account for nearly 64 % of volume (in 1994), followed by barium/cadmium and organotin compounds. Cadmium-based heat stabilisers are rapidly being replaced due to environmental concerns. Barium/zinc and calcium/zinc compounds show a high growth rate. It is expected that methyltin stabilisers will soon dominate the growing PVC pipe market. [Pg.780]

A waste is toxic under 40 CFR Part 261 if the extract from a sample of the waste exceeds specified limits for any one of eight elements and five pesticides (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, endrin, methoxychlor, toxaphene, 2,4-D and 2,4,5-TP Silvex using extraction procedure (EP) toxicity test methods. Note that this narrow definition of toxicity relates to whether a waste is defined as hazardous for regulatory purposes in the context of this chapter, toxicity has a broader meaning because most deep-well-injected wastes have properties that can be toxic to living organisms. [Pg.784]

Inorganic elements can be broadly classified as metals and nonmetals. Most metallic elements become toxic at some concentration. Nine elements (arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, and thallium) and cyanide are defined as hazardous inorganics for the purposes of deep-well injection. [Pg.819]

Special consideration should be paid to metal complexes such as azomethine pigments (Sec. 2.10). At high temperatures, the yellow copper complex with the chemical constitution 10, incorporated in PVC, will exchange its chelated copper atoms with the metal atoms present in the application medium. Stabilizers containing barium/cadmium or lead produce yellow shades, while dibutyl tin thiogly-colate or other tin compounds produce a brilliant medium red. Color change is slow at low temperatures, but at 160°C the effect is rapid [108],... [Pg.101]

Intimate mixtures of chlorates, bromates or iodates of barium, cadmium, calcium, magnesium, potassium, sodium or zinc, with finely divided aluminium, arsenic, copper carbon, phosphorus, sulfur hydrides of alkali- and alkaline earth-metals sulfides of antimony, arsenic, copper or tin metal cyanides, thiocyanates or impure manganese dioxide may react violently or explosively, either spontaneously (especially in presence of moisture) or on initiation by heat, friction, impact, sparks or addition of sulfuric acid [1], Mixtures of sodium or potassium chlorate with sulfur or phosphorus are rated as being exceptionally dangerous on frictional initiation. [Pg.238]

Pesticide wastes that are hazardous by reason of the characteristics are those which are either solvent based and have a flash point <60 °C are aqueous and have a pH <2.0 or >12.5 release HCN or H2S upon contact with acids or leach greater than threshold levels of one or more of the elements arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver, or the pesticides endrin, lindane, methoxychlor, toxa-phene, 2,4-D or 2,4,5-TP. To date, these are the only pesticides for which thresholds have been established. [Pg.20]

Terra-Vit was evaluated in a pilot-scale treatability study at the Recomp of Washington site in Ferndale, Washington. During this study. Terra-Vit was used to process 2 tons of municipal incinerator ash containing barium, cadmium, and lead. Treatment costs were reported to be 52 per ton (D10028N, p. 11 D213445). [Pg.393]

Rosenberg [63] investigated the properties of sodium, potassium, calcium, strontium, barium, cadmium, cupric, copper, manganese, thallium and silver fulminates and compared them with mercury fulminate. Some of this results are shown in Table 24. [Pg.157]

Aluminum, arsenic, barium, cadmium, calcium, copper, chromium, iron, lead, magnesium, manganese, mercury, nickel, phosphorus, potassium, selenium, sodium, sulfur, thallium, zinc, aldrin, dichlorodiphenyldichloroethane, dichlorodiphenyldichlorethene, dieldrin, hexachlorobenzene, heptachlorepoxide, hexachlorocyclohexane, dichlorodiphenyltrichloroethane (DDT), PCBs, pentachlorophenol, P,P -DDT... [Pg.68]

Of the elements in the Periodic Table more than two thirds are metals. Although many of these metals are toxic, only some metals are major environmental pollutants, because of their widespread use. U S. EPA has classified 13 metals as priority pollutants aluminum, antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc. The Resource Conservation and Recovery Act has fisted eight metals whose mobility in the soil is measured to determine the characteristic of toxic wastes. These metals include arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver—all but one from the above list of priority pollutant metals. [Pg.84]


See other pages where Barium-cadmium is mentioned: [Pg.88]    [Pg.420]    [Pg.549]    [Pg.334]    [Pg.217]    [Pg.220]    [Pg.818]    [Pg.349]    [Pg.1524]    [Pg.70]    [Pg.360]    [Pg.486]    [Pg.785]    [Pg.215]    [Pg.237]    [Pg.334]    [Pg.69]    [Pg.549]    [Pg.551]    [Pg.556]    [Pg.88]    [Pg.314]    [Pg.1585]    [Pg.1524]    [Pg.114]    [Pg.33]    [Pg.20]   


SEARCH



Barium acetate cadmium chloride

Barium-cadmium soaps

Barium-cadmium synergism

Cadmium ammonium sulphate barium chloride

Cadmium-barium systems

© 2024 chempedia.info