Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl chloride, poly copolymers

Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]... Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]...
Membrane stmcture is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc). Commonly used polymers include cellulose acetates, polyamides, polysulfones, dynels (vinyl chloride-acrylonitrile copolymers) and poly(vinyhdene fluoride). [Pg.294]

Conversely, cling film (plasticised PVC/PVDC, (poly(vinyl chloride)/poly (vinylidene chloride), copolymer, which has very high gas-barrier properties) on peeling from a roll generates static electricity thus promoting adhesion to a surface, e.g., ceramics, but not metallic surfaces which conduct the static electricity away... [Pg.94]

Used industrially to produce poly(vinyl chloride) and copolymers, as an inhibitor in the production of ethylene oxide, and as a chemical intermediate for various materials including methyl chloroform, 1,1,1-trichloroethane, and chloroacetaldehyde. [Pg.357]

The polymer types shown are linear polystyrene, two types of branched polystyrene (methyl methacrylate), poly (vinyl chloride), poly butadiene poly (phenyl soiloxane), and two types of copolymer. [Pg.137]

The synthesis section systematically prepared new monomers, polymers, and an ever increasing number of copolymers. At the same time, the characterization and applications sections tested the polymers in order to ascertain which were worthy of larger scale experiments, scale-up, and patent protection. They also performed the work required to satisfy production details. These efforts, directed by Mark s personal hands-on style of management, were the first serious attempts at commercialization of polystyrene, poly(vinyl chloride), poly(methyl methacrylate), and synthetic rubber. [Pg.63]

The vinyl family of polymers consists of poly(vinyl chloride), poly(vinylidene chloride), poly(vinyl acetate), and their copolymers and derived polymers. [Pg.304]

Industry estimates indicate that up to 5% of the total resin production finds its way into prototype or mill shape plastic products. By mill shapes is meant those primary uniform configuration subject to established cross-sectional and length tolerances. While this estimate is necessarily conjectural, the best available information indicates that this range is accurate. Modem Plastics magazine estimated mill shape production for 1968 in acrylics, cellulose, nylon, acetal, polycarbonate, high density polyethylene, polypropylene, poly(vinyl chloride), and copolymers to approach 336.4 million pounds. Total United States resin production for 1968 slightly exceeded 16 billion pounds. [Pg.110]

Kamakatsu, T, E. Fukada, and K. Shinohara Electrical conduction of heated poly(vinyl chloride)acrylonitrile copolymer. Rep. Prog. Pol. Phys., Japan 4, 317 (1964). [Pg.349]

The thermal and photochemical dehydrochlorination of the vinyl chloride—CO copolymer have been studied by two different groups56,57). The decomposition rate for the copolymer was significantly higher than that for poly(vinyl chloride), the rate increasing with increasing CO content of the copolymer. In addition, the thermal decomposition of the copolymer was accelerated in the presence of molecular 02 while the photodegradation was slowed down 57). As with poly(vinyl chloride), the dehydrochlorination of the copolymer resulted in the formation of polyene sequences. There was no appreciable decrease in molecular weight. [Pg.136]

The polymerization reaction in aqueous suspension of vinyl chloride in the presence of an ethylene-propylene saturated elastomer occurs with the formation of poly (vinyl chloride) homopolymer and rubber-poly (vinyl chloride) grafted copolymers. The first grafting reaction proceeds as far as diffusion of the monomer inside the particles in suspension is possible afterwards, some chain branching of grafted PVC is possible. Under our experimental conditions the amount of grafted rubber does not exceed 60% of the initial rubber and is little influenced by the type of initiator used. [Pg.287]

PS PSF PSU PTFE PU PUR PVA PVAL PVB PVC PVCA PVDA PVDC PVDF PVF PVOH SAN SB SBC SBR SMA SMC TA TDI TEFE TPA UF ULDPE UP UR VLDPE ZNC Polystyrene Polysulfone (also PSU) Polysulfone (also PSF) Polytetrafluoroethylene Polyurethane Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) poly(vinyl butyrate) Poly(vinyl chloride) Poly(vinyl chloride-acetate) Poly(vinylidene acetate) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl fluoride) Poly(vinyl alcohol) Styrene-acrylonitrile copolymer Styrene-butadiene copolymer Styrene block copolymer Styrene butadiene rubber Styrene-maleic anhydride (also SMC) Styrene-maleic anhydride (also SMA) Terephthalic acid (also TPA) Toluene diisocyanate Ethylene-tetrafluoroethylene copolymer Terephthalic acid (also TA) Urea formaldehyde Ultralow-density polyethylene Unsaturated polyester resin Urethane Very low-density polyethylene Ziegler-Natta catalyst... [Pg.960]

Most of today s ultrafiltration membranes are made by variations of the Loeb-Sourirajan process. A limited number of materials are used, primarily polyacrylonitrile, poly(vinyl chloride)-polyacrylonitrile copolymers, polysulfone, poly(ether sulfone), poly(vinylidene fluoride), some aromatic polyamides, and cellulose acetate. In general, the more hydrophilic membranes are more fouling-resistant than the completely hydrophobic materials. For this reason water-soluble... [Pg.253]

Tygon Poly(vinyl chloride) and copolymers U.S. Stoneware... [Pg.945]

Poly(styrene)s containing acylperoxide groups are thus obtained by selective photolysis of the azo moieties at 350 or 371 nm. These prepolymers are successively used as macronitiators for the free radical polymerization of vinyl chloride at 70 °C. Styrene/vinyl chloride block copolymers are thus produced [55] by the above two-step route, although relevant amounts (50-60%) of poly(styrene) and poly(vinyl chloride), due to both low peroxide content ( 0.6 groups per macromolecule of polystyrene) and chain transfer with solvent and monomer, are also pre t. [Pg.197]

Scheme 43. Poly(vinyl chloride) graft copolymers via ATRP [297]... Scheme 43. Poly(vinyl chloride) graft copolymers via ATRP [297]...
An interesting electrochemical method for the determination of bound sialic acid has been developed, making use of a potentiometric four-channel thick-film sensor [236]. The sialidase sensor consists of a bilayer of a membrane containing Clostridium perfringens sialidase immobilized in a poly(vinyl acetate)-polyethylene copolymer, which is placed on top of an fT -selective poly(vinyl chloride)-poly(vinyl acetate) indicator membrane. The enzyme-induced release of bound sialic acid leads to a concomitant decrease in pA a of the carboxyl function of sialic acid. This decrease affords a local pH change inside the sialidase-containing sensor membrane, which is monitored by the H -selective indicator membrane. The pH optimum of the sialidase sensor was pH 4 for sialyllactose, mucin and colominic acid. [Pg.264]

Exchange between product and pack can occur in both directions, e.g. certain labelling materials such as heat sensitive and self-adhesive labels when in contact with plastic materials. Both the plastic and the adhesives may contain plasticisers or migratory constituents. Most cellulosics use phthalate, sebacate, phosphate-type plasticisers (e.g. methyl phthalate (DMP) may be used in cellulose acetate). Plasticisers may also be found in poly vinyl chloride/acetate copolymers, polyvinyl acetate and polyvinyl alcohol formulations, polymethyl methacrylate, nylon and certain thermosetting resins. [Pg.208]

Poly(vinyl chloride), poly(acrylonitrile) and the high acrylonitrile copolymers have presented the major problems with respect to reducing the residual monomer content to extremely low levels. These are in the glassy state under the conditions where monomer removal must be carried out. In principle, the temperature should be raised above the glass temperature to facilitate monomer removal. In practice, however, the systems are usually lattices or slurries of suspension polymer and coagulation could become a problem. In any case, both the rubbery and glassy states must be considered in any discussion of the monomer removal problem. The basic principles of the transport of gases in both situations have been presented briefly and with appropriate literature references in the introductory section of this review. [Pg.109]

The suitability of several other membranes for demineralizing saline waters was then investigated. Commercially available membranes of polystyrene, polyethylene terephthalate), copolymer poly (vinyl chloride)-poly (vinyl acetate), rubber hydrochloride, cellulose triacetate, and ethylcellulose were tested. Only the cellulose triacetate and ethylcellulose gave high degrees of desalinization... [Pg.127]

The polymerization of vinyl monomers in liquid and supercritical CO2 has been studied extensively. Patents were issued in 1968 to the Sumitomo Chemical Company [81] and in 1970 to Fukui et al. [82] for the preparation of homopolymers of polystyrene, poly(vinyl chloride), poly(acrylonitrile) (PAN), poly-(acrylic acid) (PAA), and poly(vinyl acetate) (PVAc), as well as the random copolymers PS-co-PMMA and PVC-co-PVAc. Additionally, a patent was issued in 1995 to Bayer AG [83] for the preparation of styrene/acrylonitrile copolymers in SCCO2. In 1986, the BASF Corporation was issued a Canadian patent for the precipitation polymerization of 2-hydroxyethylacrylate and various N-vinylcarboxamides in compressed carbon dioxide [84]. In 1988, Terry et al. attempted to homopolymerize ethylene, 1-octene, and 1-decene in SCCO2 for the purpose of increasing the viscosity of CO2 for enhanced oil recovery [85]. These reactions utilized free-radical initiation with benzoyl peroxide and r-butylperoctoate at 71 °C and 100-130 bar for 24-48 h. Although the resulting polymers were not well characterized, they were found to be relatively... [Pg.305]

A number of important commercial resins are manufactured by suspension polymerization, including poly(vinyl chloride) and copolymers, styrene resins [general purpose polystyrene, EPS, high impact polystyrene (HIPS), poly(styrene-acrylonitrile) (SAN), poly(acrylonitrile-butadiene-styrene) (ABS), styrenic ion-exchange resins], poly(methyl methacrylate) and copolymers, and poly(vinyl acetate). However, some of these polymers rather use a mass-suspension process, in which the polymerization starts as a bulk one and, at certain conversion, water and suspending agents are added to the reactor to form a suspension and continue the polymerization in this way up to high conversions. No continuous suspension polymerization process is known to be employed on a... [Pg.306]

Trimethylcyclohe.xanone [873-94-9] (TMC-one, 3,3,5-trimethylcyclohexanone) is a saturated cyclic ketone. It is a colorless high boiler with an aromatic odor reminiscent of menthol. Trimethylcyclohexanone is only moderately miscible with water, but is miscible in all proportions with all organic solvents. It is chemically closely related to isophorone. Trimethylcyclohexanone dissolves cellulose nitrate, low molecular mass PVC grades, poly(vinyl acetate), vinyl chloride-vinylacetate copolymers, chlorinated rubber, alkyd resins, unsaturated polyester resins, epoxy resins, acrylic resins, etc. [Pg.361]

Butyl acetate [123-86-4] is a colorless, neutral, water-immiscible liquid with a pleasant, fruity odor. It has a good solvency for cellulose nitrate, cellulose ethers, chlorinated rubber, postchlorinated poly(vinyl chloride), poly(vinyl acetate), polyacrylates, polymethacrylates, vinyl chloride copolymers, polystyrene, natural and synthetic resins, alkyd resins, fats, and oils. Cellulose acetate is insoluble. [Pg.363]

It has been found that MMA/BMA copolymers and poly (methyl methacrylate) are compatible with poly (vinyl chloride). Poly(butyl methacrylate) on the other hand, is incompatible with PVC. Three component systems exhibit heterogeneous structures it seems that one phase consisted of the blend of PMMA with PVC, while the other was PBMA. Differences have been observed in the results of compatibility tests between the mixtures in the solid state and in solution. A solvent, an additional component, may bring about drastic changes in the behaviour of the system, as changes of interactions between polymers may then occur. [Pg.108]

Papers concerning the physical properties of polymers as the guest components in urea inclusion compounds and polymerization reactions of guest monomer molecules within the urea tunnel structure have been reviewed elsewhere. The polymers studied included poly (ethylene), poly (acrylonitrile), poly (1,3-butadiene), poly(eth-ylene oxide), poly(tetrahydrofiiran), poly(acrolein), poly(vinyl chloride), poly(ethyl acrylate), poly(lactide), poIy(lactic acid), poly(ethylene adipate). poly(ethylene succinate), acrylonitrile-ethyl acrylate copolymer, and poly(hexanediol di acrylate). [Pg.1544]

MAJOR APPLICATIONS Modeling of conformational changes of biopol)rmers and modeling of a-helical polypeptides. Used in chromatography as a stationary phase for the resolution of racemic materials. Microencapsulation of pharmaceutically active hydrophobic liquids. Improves shatter resistance of plastics when blended with poly(vinyl chloride), poly(vinyl acetate), or their copolymers. [Pg.299]

Rigid packages, such as bottles, boxes, trays, cups, vials, and various closures, are made from materials of sufficient strength and rigidity. Widely used polymers are high-density polyethylene, polypropylene, polybutene, poly(vinyl chloride), acrylic copolymers, polycarbonate, nylon, and polyethylene terephthalate (PET). Biodegradable PET is preferred due to environment concerns but it is expensive. The closure (or cap) of the container is typically made of polypropylene or... [Pg.12]

Polyarylate resin Polyarylether ketone resin Polyester carbonate resin Polyetherimide resin Polyethylene, chlorinated Polyethylene glycol Polyethylene, medium density Poly (p-methylstyrene) Poly (p-methylstyrene), rubber-modified Poly (oxy-1,2-ethanediyloxycarbonyl-2,6-naphthalenediylcarbonyl) resin Poly (oxy-p-phenylenesulfonyl-p-phenyleneoxy-p-phenyleneisopropylidene-p-phenylene) resin Poly (phenyleneterephthalamide) resin Polysulfone resin Poly (tetramethylene terephthalate) Polyvinylidene chloride Potassium sorbate Potato (Solanum tuberosum) starch Silica, colloidal Silicone Sodium N-alkylbenzenesulfonate Sodium bicarbonate Sodium tetraborate pentahydrate Starch, pregelatinized Styrene/acrylates copolymer Styrene/butadiene polymer Styrene/DVB copolymer , 1,1 -Sulfonylbis (4-chlorobenzene) polymer with 4,4 -(1-methylethylidene) bis (phenol) and 4,4 -sulfonylbis (phenol) Synthetic wax Tapioca starch Tetrafluoroethylene/perfluoro (propyl vinyl ether) copolymer Tocopherol Triglycidyl isocyanurate VA/crotonates copolymer Vinyl chloride/ethylene copolymer Wheat (Triticum vulgare) starch... [Pg.5315]

Other workers have reported the preparation of methyl methacrylate-styrene and methyl methacrylate-vinyl chloride block copolymers by a two stage free radical polymerization. First they prepared telomers of styrene (or vinyl chloride) and poly(methyl methacrylate) terminated by carbon tetrachloride. Then they heated the telomers of the desired monomers in the presence of bis-(ephedrine) copper to prepare sequential ABAB block copolymers(87). Poly(methyl methacrylate-b-acrylonitrile) was prepared by heating (CO)5Mn(CF2)2 terminated poly(methyl methacrylate) and acrylonitrile at 100 C(88) ... [Pg.95]


See other pages where Vinyl chloride, poly copolymers is mentioned: [Pg.11]    [Pg.204]    [Pg.66]    [Pg.58]    [Pg.751]    [Pg.339]    [Pg.192]    [Pg.287]    [Pg.402]    [Pg.147]    [Pg.267]    [Pg.106]    [Pg.1]    [Pg.132]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Copolymers chloride

Poly chloride

Poly vinyl chloride

Poly[vinyl

Vinyl chloride

Vinyl chloride copolymers

Vinylic chlorides

© 2024 chempedia.info