Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear polystyrene

Meijer and co-workers also used a divergent dendrimer synthesis to prepare AB diblock structures (Figure 7.13B) in which the polystyrene linear block is used to initiate growth of the polypropylene imine) dendritic block [45], An amino end group had to be introduced in the polystyrene as a core for subsequent growth of the dendritic fragment via an iterative protocol of sequential... [Pg.184]

Catalysts employed in this study are zirconium(lV)-hydrides on oxide support (silica, silica-alumina and alumina). Their synthesis is described above. We present here some transformations or modifications of polystyrene, linear alkanes and polyethylene with Zr-H catalyst... [Pg.101]

Figure 8.8. Calculated reflectivities compared with various profiles for a polydimethyl siloxane-polystyrene linear diblock copolymer spread at the surface of ethyl benzoate. After Kent et al. (1992). Figure 8.8. Calculated reflectivities compared with various profiles for a polydimethyl siloxane-polystyrene linear diblock copolymer spread at the surface of ethyl benzoate. After Kent et al. (1992).
Figure 3.12 shows that, at long times, the creep compliance is directly proportional to time for the polymers shown. For polystyrene (M = 600,000) at 100°C, the following values describe the linear portion of the datat ... [Pg.195]

Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]... Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]...
Coefficient of Linear Thermal Expansion. The coefficients of linear thermal expansion of polymers are higher than those for most rigid materials at ambient temperatures because of the supercooled-liquid nature of the polymeric state, and this applies to the cellular state as well. Variation of this property with density and temperature has been reported for polystyrene foams (202) and for foams in general (22). When cellular polymers are used as components of large stmctures, the coefficient of thermal expansion must be considered carefully because of its magnitude compared with those of most nonpolymeric stmctural materials (203). [Pg.414]

The organic and aqueous phases are prepared in separate tanks before transferring to the reaction ketde. In the manufacture of a styrenic copolymer, predeterrnined amounts of styrene (1) and divinylbenzene (2) are mixed together in the organic phase tank. Styrene is the principal constituent, and is usually about 90—95 wt % of the formulation. The other 5—10% is DVB. It is required to link chains of linear polystyrene together as polymerization proceeds. DVB is referred to as a cross-linker. Without it, functionalized polystyrene would be much too soluble to perform as an ion-exchange resin. Ethylene—methacrylate [97-90-5] and to a lesser degree trivinylbenzene [1322-23-2] are occasionally used as substitutes for DVB. [Pg.373]

Polystyrene [9003-53-6] (PS), the parent of the styrene plastics family, is a high molecular weight linear polymer which, for commercial uses, consists of - 1000 styrene units. Its chemical formula (1), where n = - 1000, tells htde of its properties. [Pg.503]

LDPE = low density polyethylene LLDPE = linear low density polyethylene HDPE = high density polyethylene PP = polypropylene PVC = polyvinyl chloride PS = polystyrene ABS = polyacrylonitrile-butadiene-styrene. [Pg.326]

Polystyrene. Polystyrene [9003-53-6] is a thermoplastic prepared by the polymerization of styrene, primarily the suspension or bulk processes. Polystyrene is a linear polymer that is atactic, amorphous, inert to acids and alkahes, but attacked by aromatic solvents and chlorinated hydrocarbons such as dry cleaning fluids. It is clear but yellows and crazes on outdoor exposure when attacked by uv light. It is britde and does not accept plasticizers, though mbber can be compounded with it to raise the impact strength, ie, high impact polystyrene (HIPS). Its principal use in building products is as a foamed plastic (see Eoamed plastics). The foams are used for interior trim, door and window frames, cabinetry, and, in the low density expanded form, for insulation (see Styrene plastics). [Pg.327]

Stereon Pkestone Specialty materials linear B sibcone oil high polystyrene content... [Pg.16]

Figure 1 shows a positive static SIMS spectrum (obtained using a quadrupole) for polyethylene over the mass range 0—200 amu. The data are plotted as secondary ion intensity on a linear y-axis as a function of their chaige-to-mass ratios (amu). This spectrum can be compared to a similar analysis from polystyrene seen in Figure 2. One can note easily the differences in fragmentation patterns between the... Figure 1 shows a positive static SIMS spectrum (obtained using a quadrupole) for polyethylene over the mass range 0—200 amu. The data are plotted as secondary ion intensity on a linear y-axis as a function of their chaige-to-mass ratios (amu). This spectrum can be compared to a similar analysis from polystyrene seen in Figure 2. One can note easily the differences in fragmentation patterns between the...
More recently Fina Chemicals have introduced linear SBS materials (Finaclear) in which the butadiene is present both in block form and in a mixed butadiene-styrene block. Thus comparing typical materials with a total styrene content of about 75% by weight, the amount of rubbery segment in the total molecule is somewhat higher. As a result it is claimed that when blended with polystyrene the linear block copolymers give polymers with a higher impact strength but without loss of clarity. [Pg.440]

Optical properties of the blends are somewhat dependent on the molecular weight of the polystyrene, presence of additives such as lubricant in the polystyrene, ratio of polystyrene to SBS, processing conditions and mixing effectiveness of the extruder. It is stated that the optical properties of the sheets are similar whether linear or radial type stereoblock polymers are used. [Pg.440]

The main results of this miero-mechanical model in the quasi-static regime have been compared with experimental results obtained by placing polystyrene (PS)-polyvinyl pyridine (PVP) diblock copolymers with a short PVP block between PS and PVP homopolymers. The fracture toughness was found to increase linearly with E from that of the bare PS/PVP interface, while the slope of the line increased with the degree of polymerization of the block being pulled out. If the data for the different copolymers were plotted as AG vs. (where... [Pg.226]

Resins and plastics such as low-density polyethylene (LDPE), high-density polyethylene (HOPE), linear low-density polyethylene (LLDPE), polypropylene, polystyrene, and polyvinyl chloride (PVC) ... [Pg.54]

SBS (linear or star) Polystyrene Polybutadiene Polystyrene Polyethylene Thermoplastic elastomer... [Pg.169]

H. Kim, T. Chang, J. M. Yohanan, L. Wang, H. Yu. Polymer diffusion in linear matrices Polystyrene in toluene. Macromolecules 19 2121-21AA, 1986. [Pg.628]

N. Nemoto, M. Kishine, T. Inoue, T. Osaki. Tracer diffusion of linear polystyrene in entanglement networks. Macromolecules 22 659-664, 1990. [Pg.629]


See other pages where Linear polystyrene is mentioned: [Pg.260]    [Pg.71]    [Pg.302]    [Pg.10]    [Pg.10]    [Pg.184]    [Pg.71]    [Pg.37]    [Pg.260]    [Pg.71]    [Pg.302]    [Pg.10]    [Pg.10]    [Pg.184]    [Pg.71]    [Pg.37]    [Pg.235]    [Pg.279]    [Pg.429]    [Pg.429]    [Pg.151]    [Pg.438]    [Pg.468]    [Pg.186]    [Pg.481]    [Pg.220]    [Pg.228]    [Pg.231]    [Pg.234]    [Pg.43]    [Pg.433]    [Pg.437]    [Pg.455]    [Pg.318]    [Pg.182]    [Pg.385]    [Pg.483]   
See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Linear Combs with Polystyrene Branches

Linear polystyrenes, rheological

Linear polystyrenes, rheological properties

Polystyrene Linear viscoelastic behavior

Polystyrene linear, rate

Polystyrene soluble, linear

Sulfonated linear polystyrene

© 2024 chempedia.info