Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer resin styrene-butadiene copolymers

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Of the 17 billion lb of butadiene consumed in 1999, almost two thirds went into the production of elastomers (styrene-butadiene latex rubber (SBR), polybutadiene, nitrile, and polychloroprene). Adiponitrile, ABS resins, styrene-butadiene latex, styrene block copolymers, and other smaller polymer uses accounted for the remainder. The largest single use was for styrene-butadiene copolymers (SBR and latex). Most of it was made by an emulsion process using a free-radical initiator and a styrene-butadiene ratio of about 1 3. More detailed description of the rubber and polymer used can be found in Chapters 16 and 15. [Pg.390]

The development of high styrene content styrene-butadiene copolymers (SBCs), such as K-Resin SBC, is best thought of as a branch off the history of anionic polymerization and rubber. A number of excellent reviews cover this aspect of the subject in great detail, and should be obtained for detailed examination of the history of rubber and anionically synthesized rubber polymers [1-3]. What follows is a brief overview to fit the high styrene content SBC into a historical context. [Pg.501]

RICON 100 SBS SD 354 S6F HISTYRENE RESIN SKS 85 SOIL STABIUZER 661 SOLPRENE 300 STYRENE-BUTADIENE COPOLYMER STYRENE-1,3-BUTADIENE COPOLYMER STYRENE-BUTADIENE POLYMER SYNPOL 1500 THERMOPLASTIC 125 TR201 UP IE VESTYRON HI... [Pg.1283]

Acrylonitrile is used in the production of acrylic fibers, resins, and surface coating as an intermediate in the production of pharmaceuticals and dyes as a polymer modifier and as a fumigant. It may occur in fire-effluent gases because of pyroly-ses of polyacrylonitrile materials. Acrylonitrile was found to be released from the acrylonitrile-styrene copolymer and acrylonitrile-styrene-butadiene copolymer bottles when these bottles were filled wifh food-simulating solvents such as water, 4% acetic acid, 20% ethanol, and heptane and stored for 10 days to 5 months (Nakazawa et al. 1984). The release was greater with increasing temperature and was attributable to the residual acrylonitrile monomer in the polymeric materials. [Pg.295]

Polymer characterization is an important use of NIR spectrometry. Polymers can be made either from a single monomer, as is polyethylene, or from mixtures of monomers, as are styrene-butadiene rubber from styrene and butadiene and nylon 6-6, made from hexamethylenediamine and adipic acid. An important parameter of such copolymers is the relative amount of each present. This can be determined by NIR for polymers with the appropriate functional groups. Styrene content in a styrene-butadiene copolymer can be measured using the aromatic and aliphatic C—H bands. Nylon can be characterized by the NH band from the amine monomer and the C=0 band from the carboxylic acid monomer. Nitrogen-containing polymers such as nylons, polyurethanes, and urea formaldehyde resins can be measured by using the NH bands. Block copolymers, which are typically made of a soft block of polyester and a hard block containing aromatics, for example, polystyrene, have been analyzed by NIR. These analyses have utilized the... [Pg.288]

The minimum temperature at which the latex particles will coalesce to form a continuous layer depends mainly on the Tg. The Tg of a latex paint polymer is therefore adjusted by copolymerization or plasticization to a suitable range. The three principal polymer latexes used in emulsion paints are styrene-butadiene copolymer, poly(vinyl acetate), and acrylic resin. [Pg.259]

The properties of bitumen paints (Section 2.14.2) can be favorably modified and adjusted to suit practical requirements by combination with other film-forming substances. For example, the thermoplasticity can be reduced and/or mechanical properties (e.g., hardness, extensibility) can be improved by adding polymers such as polyethylene, polypropylene, polyisobutene, and styrene-butadiene copolymers. The chemical resistance can also be improved high-quality corrosion protection coatings can be obtained by combination with alkyd resins. [Pg.93]

Synonyms Benzene, ethenyi-, polymer with 1,3-butadiene B/S Butadi-ene/styrene copolymer 1,3-Butadiene/styrene copolymer Butadiene/ styrene polymer 1,3-Butadiene/styrene polymer Butadiene/styrene resin 1,3-Butadiene/styrene resin Butadiene/styrene rubber Ethenylbenzene polymer with 1,3-butadiene Polybutadiene/polysty-rene copolymer Poly (styrene-co-butadiene) S/B SBR Styrene/butadiene Styrene/butadiene copolymer Styrene/1,3-butadiene copolymer Styrene polymer with 1,3 butadiene Classification Polymer synthetic rubber Formula pCH2CH(C6H5)],(CH2CH=CHCH2),... [Pg.1366]

Because of their amphiphilic character, alkali resinates have been exploited both as polymer latex stabilizers and as surfactants in emulsion polymerization from the early development of these techniques, as in the pre-Second World War industrial example of the polymerization of 2-chloro-l,3-butadiene, to produce neoprene [68]. In the following decades, other emulsion polymerizations systems, like the synthesis of styrene-butadiene copolymers [68, 69], also called upon these surfactants, which are still being envisaged today, for example, for the polymerization of styrene [70] and chloroprene [71]. However, the reactivity of the conjugated double bond towards free radicals has made it more profitable to use hydrogenated or dehydrogenated rosins rather than their natural forms [68, 72]. [Pg.78]

The binder, therefore, must have the following properties good adhesion to fibre and pigment in the dry state, and in water and solvent a soft, non-tacky handle elasticity lightfastness, clarity and no colour compatibility with, and stability towards, other ingredients in the mix. Some styrene butadiene copolymer rubbers and vinyl latices are used successfully but the most suited are the acrylics. The polymers are usually either self-cross-linking (with heat) or incorporate a cross-linkable resin such as melamine-formaldehyde. [Pg.38]

The polymers described in this chapter are industrial-grade materials, and consequently some of the examples may contain additives and/or may be chemically modified. Polymers in various morphological forms may be analyzed, and these include films, fibers, solid pelletized and powdered products, and dissolved/dispersed materials in liquids such as paints and latex products. Also, the same base polymer, such as a styrene-butadiene copolymer, for example, may exist in a rubber, a resin, or a plastic. In general, reference will not be made to the original source of the polymer samples. Because infrared spectroscopy is more widely used than the Raman method, the authors will focus more on the applications of this technique. However, the Raman method, which is complementary to the IR method, does have important and unique applications in the polymer analysis, especially with regard to the determination of the fundamental polymer structure and its... [Pg.208]

Synthetic polymers that are commercially manufactured in the quantity of billions of pounds may be classified in three categories (1) plastics, which include thermosetting resins (e.g., urea resins, polyesters, epoxides) and thermoplastic resins (e.g., low-density as well as high-density polyethylene, polystyrene, polypropylene) (2) synthetic fibers, which include cellulosics (such as rayon and acetate) and noncellulose (such as polyester and nylon) and (3) synthetic rubber (e.g., styrene-butadiene copolymer, polybutadiene, ethylene-propylene copolymer). [Pg.7]

Toughened or rubber modified polystyrene blends are prepared by incorporating up to 10 percent by weight of poly butadiene or styrene-butadiene copolymer rubbers into the resin. The dispersed rubber particles decrease the plastic s brittleness by interrupting the crack propagation process. Unlike the unblended polymer, rubber modified polystyrene is translucent. The volume of rubber modified polystyrene made is roughly the same as that of general purpose polystyrene. [Pg.641]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Pressure sensitive adhesives typically employ a polymer, a tackifier, and an oil or solvent. Environmental concerns are moving the PSA industry toward aqueous systems. Polymers employed in PSA systems are butyl mbber, natural mbber (NR), random styrene—butadiene mbber (SBR), and block copolymers. Terpene and aUphatic resins are widely used in butyl mbber and NR-based systems, whereas PSAs based on SBR may require aromatic or aromatic modified aUphatic resins. [Pg.358]

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Standard-grade PSAs are usually made from styrene-butadiene rubber (SBR), natural rubber, or blends thereof in solution. In addition to rubbers, polyacrylates, polymethylacrylates, polyfvinyl ethers), polychloroprene, and polyisobutenes are often components of the system ([198], pp. 25-39). These are often modified with phenolic resins, or resins based on rosin esters, coumarones, or hydrocarbons. Phenolic resins improve temperature resistance, solvent resistance, and cohesive strength of PSA ([196], pp. 276-278). Antioxidants and tackifiers are also essential components. Sometimes the tackifier will be a lower molecular weight component of the high polymer system. The phenolic resins may be standard resoles, alkyl phenolics, or terpene-phenolic systems ([198], pp. 25-39 and 80-81). Pressure-sensitive dispersions are normally comprised of special acrylic ester copolymers with resin modifiers. The high polymer base used determines adhesive and cohesive properties of the PSA. [Pg.933]

Latexes are usually copolymer systems of two or more monomers, and their total solids content, including polymers, emulsifiers, stabilizers etc. is 40-50% by mass. Most commercially available polymer latexes are based on elastomeric and thermoplastic polymers which form continuous polymer films when dried [88]. The major types of latexes include styrene-butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyacrylic ester (PAE) and epoxy resin (EP) which are available both as emulsions and redispersible powders. They are widely used for bridge deck overlays and patching, as adhesives, and integral waterproofers. A brief description of the main types in current use is as follows [87]. [Pg.346]

Core-shell emulsion polymers with a core or rubbery stage based on homopolymers or copolymers of butadiene are used as impact modifiers in matrix polymers, such as ABS, for styrene acrylonitrile copolymer methyl methacrylate (MMA) polymers, poly(vinyl chloride) (PVC), and in various engineering resins such as polycarbonate) (PC) poly(ester)s, or poly(styrene)s, further in thermosetting resins such as epoxies. [Pg.315]

STYRENE. Styrene, CgH5CH=CH2, is the simplest and by far the most important member of a series of aromatic monomers. Also known commercially as styrene monomer (SM). styrene is produced in large quantities for polymerization. It is a versatile monomer extensively used for the manufacture of plastics, including crystalline polystyrene, rubber-modified impact polystyrene, expandable polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile resins (SAN), styrene-butadiene latex, styrene-butadiene rubber (SBR). and unsaturated polyester resins. See also Acrylonitrile Polymers. [Pg.1554]


See other pages where Polymer resin styrene-butadiene copolymers is mentioned: [Pg.688]    [Pg.153]    [Pg.21]    [Pg.321]    [Pg.507]    [Pg.589]    [Pg.9]    [Pg.349]    [Pg.320]    [Pg.166]    [Pg.420]    [Pg.444]    [Pg.1023]    [Pg.186]    [Pg.186]    [Pg.49]    [Pg.139]    [Pg.196]    [Pg.1292]    [Pg.403]    [Pg.558]   
See also in sourсe #XX -- [ Pg.263 , Pg.264 ]




SEARCH



Butadiene copolymers

Butadiene polymers

Butadiene-styrene resins

Copolymer resinous

Copolymers butadiene-styrene

Polymer copolymers

Polymer resin

Polymer resin copolymers

Polymer resin styrene-butadiene-acrylonitrile copolymers

Polymer styrene-butadiene copolymers

Styrene polymers

Styrene-butadiene

Styrene-butadiene polymer

Styrene-copolymers

Styrenic polymers

Styrenic resins

© 2024 chempedia.info