Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber poly

Ghoreishy, M. H. R. and Nassehi, V., 1997. Modelling the transient flow of rubber compounds in the dispersive section of an internal mixer with slip-stick boundary conditions. Adv. Poly. Tech. 16, 45-68. [Pg.109]

Mention may here be made of the fact that natural unvulcanised rubber is poly-isoprene (2-methylbutadiene) ... [Pg.1022]

As the demand for rubber increased so did the chemical industry s efforts to prepare a synthetic sub stitute One of the first elastomers (a synthetic poly mer that possesses elasticity) to find a commercial niche was neoprene discovered by chemists at Du Pont in 1931 Neoprene is produced by free radical polymerization of 2 chloro 1 3 butadiene and has the greatest variety of applications of any elastomer Some uses include electrical insulation conveyer belts hoses and weather balloons... [Pg.408]

Coordination polymerization of isoprene using Ziegler-Natta catalyst systems (Section 6 21) gives a material similar in properties to natural rubber as does polymerization of 1 3 butadiene Poly(1 3 buta diene) is produced in about two thirds the quantity of SBR each year It too finds its principal use in tires... [Pg.408]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

Dry chlorine has a great affinity for absorbing moisture, and wet chlorine is extremely corrosive, attacking most common materials except HasteUoy C, titanium, and tantalum. These metals are protected from attack by the acids formed by chlorine hydrolysis because of surface oxide films on the metal. Tantalum is the preferred constmction material for service with wet and dry chlorine. Wet chlorine gas is handled under pressure using fiberglass-reinforced plastics. Rubber-lined steel is suitable for wet chlorine gas handling up to 100°C. At low pressures and low temperatures PVC, chlorinated PVC, and reinforced polyester resins are also used. Polytetrafluoroethylene (PTFE), poly(vinyhdene fluoride) (PVDE), and... [Pg.510]

Applications. Among the P—O- and P—N-substituted polymers, the fluoroalkoxy- and aryloxy-substituted polymers have so far shown the greatest commercial promise (14—16). Both poly[bis(2,2,2-trifluoroethoxy)phosphazene] [27290-40-0] and poly(diphenoxyphosphazene) [28212-48-8] are microcrystalline, thermoplastic polymers. However, when the substituent symmetry is dismpted with a randomly placed second substituent of different length, the polymers become amorphous and serve as good elastomers. Following initial development of the fluorophosphazene elastomers by the Firestone Tire and Rubber Co., both the fluoroalkoxy (EYPEL-F) and aryloxy (EYPEL-A) elastomers were manufactured by the Ethyl Corp. in the United States from the mid-1980s until 1993 (see ELASTOLffiRS,SYNTHETic-PHOSPHAZENEs). [Pg.257]

Oxidized castor oils are excellent nonmigrating, nonvolatile plasticizers (qv) for ceUulosic resins, poly(vinyl butyral), polyamides, shellac, and natural and synthetic mbber (see Rubber, natural). The high viscosity products are also used as tackifiers in gasket compounds and adhesives (qv) because of good oil and solvent resistance. They also serve as excellent pigment grinding media and as a base for inks (qv), lubricating oils, and hydrauHc oils (62). [Pg.155]

Citric acid esters are used as plasticizers ia plastics such as poly(viayl chloride), poly(vinhdene chloride), poly(viQyl acetate), poly(viQyl butyral), polypropylene, chlorinated rubber, ethylceUulose, and cellulose nitrate. Most citrate esters are nontoxic and are acceptable by the FDA for use in food-contact packaging and for flavor in certain foods. As a plasticizer, citrate esters provide good heat and light stabiUty and excellent flexibiUty at low temperatures. Triethyl citrate, tri- -butyl citrate, isopropyl citrate, and stearyl citrate are considered GRAS for use as food ingredients (224—228). [Pg.187]

Many random copolymers have found commercial use as elastomers and plastics. For example, SBR (62), poly(butadiene- (9-styrene) [9003-55-8] has become the largest volume synthetic mbber. It can be prepared ia emulsion by use of free-radical initiators, such as K2S20g or Fe /ROOH (eq. 18), or in solution by use of alkyl lithium initiators. Emulsion SBR copolymers are produced under trade names by such companies as American Synthetic Rubber (ASPC), Armtek, B. F. Goodrich (Ameripool), and Goodyear (PHoflex) solution SBR is manufactured by Firestone (Stereon). The total U.S. production of SBR in 1990 was 581,000 t (63). [Pg.184]

Poly(butadiene- (9-acrylonitrile) [9008-18-3] NBR (64), is another commercially significant random copolymer. This mbber is manufactured by free-radical emulsion polymerization. Important producers include Copolymer Rubber and Chemical (Nysyn), B. F. Goodrich (Hycar), Goodyear (Chemigum), and Uninoyal (Paracdl). The total U.S. production of nitrile mbber (NBR) in 1990 was 95.6 t (65). The most important property of NBR mbber is its oil resistance. It is used in oil well parts, fuels, oil, and solvents (64) (see Elastomers, synthetic— nitrile rubber). [Pg.184]

Comparison of Table 5.4 and 5.7 allows the prediction that aromatic oils will be plasticisers for natural rubber, that dibutyl phthalate will plasticise poly(methyl methacrylate), that tritolyl phosphate will plasticise nitrile rubbers, that dibenzyl ether will plasticise poly(vinylidene chloride) and that dimethyl phthalate will plasticise cellulose diacetate. These predictions are found to be correct. What is not predictable is that camphor should be an effective plasticiser for cellulose nitrate. It would seem that this crystalline material, which has to be dispersed into the polymer with the aid of liquids such as ethyl alcohol, is only compatible with the polymer because of some specific interaction between the carbonyl group present in the camphor with some group in the cellulose nitrate. [Pg.88]

There is much evidence that weak links are present in the chains of most polymer species. These weak points may be at a terminal position and arise from the specific mechanism of chain termination or may be non-terminal and arise from a momentary aberration in the modus operandi of the polymerisation reaction. Because of these weak points it is found that polyethylene, polytetrafluoroethylene and poly(vinyl chloride), to take just three well-known examples, have a much lower resistance to thermal degradation than low molecular weight analogues. For similar reasons polyacrylonitrile and natural rubber may degrade whilst being dissolved in suitable solvents. [Pg.96]

It was found that the amount of chlorine that could be removed (84-87%) was in close agreement to that predicted by Flory on statistical grounds for structure Figure 12.10(a). It is of interest to note that similar statistical calculations are of relevance in the cyclisation of natural rubber and in the formation of the poly(vinyl acetals) and ketals from poly(vinyl alcohol). Since the classical work of Marvel it has been shown by diverse techniques that head-to-tail structures are almost invariably formed in addition polymerisations. [Pg.319]

At one time butadiene-acrylonitrile copolymers (nitrile rubbers) were the most important impact modifiers. Today they have been largely replaced by acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-buta-diene-styrene (MBS) terpolymers, chlorinated polyethylene, EVA-PVC graft polymers and some poly acrylates. [Pg.341]

In addition to poly(methyl methacrylate) plastics and polyacrylonitrile fibres, acrylic polymers find widespread use. First introduced in 1946, acrylic rubbers have become established as important special purpose rubbers with a useful combination of oil and heat resistance. Acrylic paints have become widely accepted particularly in the car industry whilst very interesting reactive adhesives, including the well-known super-glues are also made from acrylic polymers. [Pg.399]

As with other rigid amorphous thermoplastic polymers such as PVC and polystyrene (see the next chapter) poly(methyl methacrylate) is somewhat brittle and, as with PVC and polystrene, efforts have been made to improve the toughness by molecular modification. Two main approaches have been used, both of which have achieved a measure of success. They are copolymerisation of methyl methacrylate with a second monomer and the blending of poly(methyl methacrylate) with a rubber. The latter approach may also involve some graft copolymerisation. [Pg.413]

Poly(acrylic acid) is insoluble in its monomer but soluble in water. It does not become thermoplastic when heated. The sodium and ammonium salts have been used as emulsion-thickening agents, in particular for rubber latex. The polymer of methacrylic acid (Figure 15.13 (VI)) is similar in properties. [Pg.423]

The use of ABS has in recent years met considerable competition on two fronts, particularly in automotive applications. For lower cost applications, where demands of finish and heat resistance are not too severe, blends of polypropylene and ethylene-propylene rubbers have found application (see Chapters 11 and 31). On the other hand, where enhanced heat resistance and surface hardness are required in conjunction with excellent impact properties, polycarbonate-ABS alloys (see Section 20.8) have found many applications. These materials have also replaced ABS in a number of electrical fittings and housings for business and domestic applications. Where improved heat distortion temperature and good electrical insulation properties (including tracking resistance) are important, then ABS may be replaced by poly(butylene terephthalate). [Pg.464]

The poly(vinyl ethers), whieh were first made available in Germany before 1940, are not of importance in the plastics industry but have applications in adhesives, surfaee coatings and rubber technology. Of the many vinyl ether polymers prepared, only those from the vinyl alkyl ethers and some halogenated variants are of interest. Two methods of monomer preparations may be used. [Pg.475]

A number of higher poly(vinyl ether)s, in particular the ethyl and butyl polymers, have found use as adhesives. When antioxidants are incorporated, pressure-sensitive adhesive tapes from poly(vinyl ethyl ether) are said to have twice the shelf life of similar tapes from natural rubber. Copolymers of vinyl isobutyl ether with methyl acrylate and ethyl acrylate (Acronal series) and with vinyl chloride have been commercially marketed. The first two products have been used as adhesives and impregnating agents for textile, paper and leather whilst the latter (Vinoflex MP 400) has found use in surface coatings. [Pg.476]

Typical of these materials are the poly(vinyl thioethers), the poly(vinyl isocyanates), the poly(vinyl ureas) and the poly(alkyl vinyl ketones). Methyl isopropenyl ketone and certain vinylpyridine derivatives have been copolymerised with butadiene to give special purpose rubbers. [Pg.477]

Polyesters are eneountered in many forms. They are important as laminating resins, moulding compositions, fibres, films, surface coating resins, rubbers and plasticisers. The common factor in these widely different materials is that they all contain a number of ester linkages in the main chain. (There are also a number of polymers such as poly(vinyl acetate) which contain a number of ester groups in side chains but these are not generally considered within the term polyester resins.)... [Pg.694]

With the expiry of the basic ICI patents on poly(ethylene terephthalate) there was considerable development in terephthalate polymers in the early 1970s. More than a dozen companies introduced poly(butylene terephthalate) as an engineering plastics material whilst a polyether-ester thermoplastic rubber was introduced by Du Pont as Hytrel. Polyfethylene terephthalate) was also the basis of the glass-filled engineering polymer (Rynite) introduced by Du Pont in the late 1970s. Towards the end of the 1970s poly(ethylene terephthalate) was used for the manufacture of biaxially oriented bottles for beer, colas and other carbonated drinks, and this application has since become of major importance. Similar processes are now used for making wide-neck Jars. [Pg.695]

In Chapters 3 and 11 reference was made to thermoplastic elastomers of the triblock type. The most well known consist of a block of butadiene units joined at each end to a block of styrene units. At room temperature the styrene blocks congregate into glassy domains which act effectively to link the butadiene segments into a rubbery network. Above the Tg of the polystyrene these domains disappear and the polymer begins to flow like a thermoplastic. Because of the relatively low Tg of the short polystyrene blocks such rubbers have very limited heat resistance. Whilst in principle it may be possible to use end-blocks with a higher Tg an alternative approach is to use a block copolymer in which one of the blocks is capable of crystallisation and with a well above room temperature. Using what may be considered to be an extension of the chemical technology of poly(ethylene terephthalate) this approach has led to the availability of thermoplastic polyester elastomers (Hytrel—Du Pont Amitel—Akzo). [Pg.737]

Whilst the Tg of poly(dimethylsiloxane) rubbers is reported to be as low as -123°C they do become stiff at about -60 to -80°C due to some crystallisation. Copolymerisation of the dimethyl intermediate with a small amount of a dichlorodiphenylsilane or, preferably, phenylmethyldichlorosilane, leads to an irregular structure and hence amorphous polymer which thus remains a rubber down to its Tg. Although this is higher than the Tg of the dimethylsiloxane it is lower than the so that the polymer remains rubbery down to a lower temperature (in some cases down to -100°C). The Tg does, however, increase steadily with the fraction of phenylsiloxane and eventually rises above that of the of the dimethylsilicone rubber. In practice the use of about 10% of phenyldichlorosilane is sufficient to inhibit crystallisation without causing an excess rise in the glass transition temperature. As with the polydimethylsilox-anes, most methylphenyl silicone rubbers also contain a small amount of vinyl groups. [Pg.833]

Substantial improvements in the heat-resisting capability of silicone rubbers were achieved with the appearance of the poly(carborane siloxanes). First described in 1966, they were introduced commercially by the Olin Corporation in 1971 as Dexsil. The polymers have the essential structure... [Pg.834]

In the mid-1970s Firestone announced the availability of PNF Rubber. This rubber has been discussed in Section 13.10 and whilst referred to as a poly(fluoroalkoxyphosphazene) may be considered to be a direct descendant of the inorganic rubber first prepared by Stokes in 1895. [Pg.845]


See other pages where Rubber poly is mentioned: [Pg.149]    [Pg.259]    [Pg.1069]    [Pg.330]    [Pg.270]    [Pg.516]    [Pg.271]    [Pg.182]    [Pg.65]    [Pg.73]    [Pg.74]    [Pg.96]    [Pg.99]    [Pg.229]    [Pg.278]    [Pg.282]    [Pg.309]    [Pg.422]    [Pg.440]    [Pg.452]    [Pg.786]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 , Pg.81 ]

See also in sourсe #XX -- [ Pg.138 , Pg.249 ]




SEARCH



Bonding of rubber and poly(carbonate) waste

Butadiene rubber 1,2, poly

Chloroprene Rubber, Poly(2-chloro-l,3-butadiene)

Chloroprene rubber, poly

Glass-rubber transition, poly film

Glass-rubber transition, poly(methyl

Methyl Rubber, Poly(2,3-dimethylbutadiene)

Methyl rubber, poly

Poly (natural rubber

Poly Rubber Compounding

Poly Rubber Oxidation

Poly acrylate rubbers

Poly isoprene Rubber

Poly propylene rubber

Poly rubber extensibility

Poly rubber modified

Poly rubbers synthesis

Poly silicone rubber

Poly sulfide rubber chlorination

Poly sulfide rubbers

Poly-2-methyl-1,4-butadiene rubber

Poly-ethylene-propylene rubber

Polyurethane rubber-poly systems

Polyurethane rubber-poly(methyl

Rubber and Poly(Vinyl Chloride) Foams

Rubber, Poly(2,3-dimethylbutadiene)

Rubber, synthetic Poly

Rubber-toughened poly

Rubber-toughened poly(methyl

Rubber-toughened poly(methyl mechanisms

© 2024 chempedia.info