Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solide fuel cell

H2 production for fuel cell (high temperature solid fuel cell and molten carbonate) is also possible. [Pg.279]

With the CIC technique it is possible to inject small amounts of suspension layerwise so that all thinkable radial distributions can be realised. Suspensions with large particles and suspensions with smaller particles can be stabilised seperately, which will be easier than stabilising a suspension with a large variation in particle size. Multilayer membranes and solid fuel cell... [Pg.66]

Sodium terbium borate is used in solid-state devices. The oxide has potential application as an activator for green phosphors used in color TV tubes. It can be used with Zr02 as a crystal stabilizer of fuel cells which operate at elevated temperature. Few other uses have been found. [Pg.189]

M. A. DeLuchi, E. D. Laison, and R. H. WiUiams, Hjdrogen andMethanol Production and Use in Fuel Cell andintemal Combustion Engine Vehicles—-A preliminary Assessment, Vol. 12, Solid Fuel Conversion for the Transportation Sector, ASME, Fuels and Combustion Technologies Division, New York, 1991, pp. 55-70. [Pg.435]

Fig. 11. Solid polymer electrolyte (SPE) fuel cell (a) cell design and (b) power curve at 25°C. Fig. 11. Solid polymer electrolyte (SPE) fuel cell (a) cell design and (b) power curve at 25°C.
Solid Oxide Fuel Cell In SOF(7s the electrolyte is a ceramic oxide ion conductor, such as vttriurn-doped zirconium oxide. The conduetKity of this material is 0.1 S/ern at 1273 K (1832°F) it decreases to 0.01 S/ern at 1073 K (1472°F), and by another order of magnitude at 773 K (932°F). Because the resistive losses need to be kept below about 50 rn, the operating temperature of the... [Pg.2413]

In the ceramics field many of the new advanced ceramic oxides have a specially prepared mixture of cations which determines the crystal structure, through the relative sizes of the cations and oxygen ions, and the physical properties through the choice of cations and tlreh oxidation states. These include, for example, solid electrolytes and electrodes for sensors and fuel cells, fenites and garnets for magnetic systems, zirconates and titanates for piezoelectric materials, as well as ceramic superconductors and a number of other substances... [Pg.234]

Solid oxide fuel cells consist of solid electrolytes held between metallic or oxide elecU odes. The most successful fuel cell utilizing an oxide electrolyte to date employs Zr02 containing a few mole per cent of yttrium oxide, which operates in tire temperature range 1100-1300 K. Other electrolytes based... [Pg.244]

A signihcant problem in tire combination of solid electrolytes with oxide electrodes arises from the difference in thermal expansion coefficients of the materials, leading to rupture of tire electrode/electrolyte interface when the fuel cell is, inevitably, subject to temperature cycles. Insufficient experimental data are available for most of tire elecuolytes and the perovskites as a function of temperature and oxygen partial pressure, which determines the stoichiometty of the perovskites, to make a quantitative assessment at the present time, and mostly decisions must be made from direct experiment. However, Steele (loc. cit.) observes that tire electrode Lao.eSro.rCoo.aFeo.sOs-j functions well in combination widr a ceria-gadolinia electrolyte since botlr have closely similar thermal expansion coefficients. [Pg.247]

A completely separate family of conducting polymers is based on ionic conduction polymers of this kind (Section 11.3.1.2) are used to make solid electrolyte membranes for advanced batteries and some kinds of fuel cell. [Pg.333]

Singhal, S.C. (2000) Science and technology of solid-oxide fuel cells, MRS Bull. 25(3), 16. [Pg.461]

Current availability of individual lanthanides (plus Y and La) in a state of high purity and relatively low cost has stimulated research into potential new applications. These are mainly in the field of solid state chemistry and include solid oxide fuel cells, new phosphors and perhaps most significantly high temperature superconductors... [Pg.1232]

Solid Oxide Fuel Cell developed by Baur, Preis and Schottk (1951)... [Pg.522]

The most promising fuel cell for transportation purposes was initially developed in the 1960s and is called the proton-exchange membrane fuel cell (PEMFC). Compared with the PAFC, it has much greater power density state-of-the-art PEMFC stacks can produce in excess of 1 kWA. It is also potentially less expensive and, because it uses a thin solid polymer electrolyte sheet, it has relatively few sealing and corrosion issues and no problems associated tvith electrolyte dilution by the product water. [Pg.528]

As with batteries, differences in electrolytes create several types of fuel cells. The automobile s demanding requirements for compactness and fast start-up have led to the Proton Exchange Membrane (PEM) fuel cell being the preferred type. This fuel cell has an electrolyte made of a solid polymer. [Pg.531]

Prater, K. B. (1996). Solid Polymer Fuel Cells for Transport and Stationary Applications. Journal ot Power Sources 61 105-109. [Pg.644]

Dry cells (batteries) and fuel cells are the main chemical electricity sources. Diy cells consist of two electrodes, made of different metals, placed into a solid electrolyte. The latter facilitates an oxidation process and a flow of electrons between electrodes, directly converting chemical energy into electricity. Various metal combinations in electrodes determine different characteristics of the dry cells. For example, nickel-cadmium cells have low output but can work for several years. On the other hand, silver-zinc cells are more powerful but with a much shorter life span. Therefore, the use of a particular type of dry cell is determined by the spacecraft mission profile. Usually these are the short missions with low electricity consumption. Diy cells are simple and reliable, since they lack moving parts. Their major drawbacks are... [Pg.1076]

One leading prototype of a high-temperature fuel cell is the solid oxide fuel cell, or SOFC. The basic principle of the SOFC, like the PEM, is to use an electrolyte layer with high ionic conductivity but very small electronic conductivity. Figure B shows a schematic illustration of a SOFC fuel cell using carbon monoxide as fuel. [Pg.504]

A membrane ionomer, in particular a polyelectrolyte with an inert backbone such as Nation . They require a plasticizer (typically water) to achieve good conductivity levels and are associated primarily, in their protonconducting form, with solid polymer-electrolyte fuel cells. [Pg.500]

The tape-casting method makes possible the fabrication of films in the region of several hundred micrometers thick. The mechanical strength allows the use of such a solid electrolyte as the structural element for devices such as the high-temperature solid oxide fuel cell in which zirconia-based solid electrolytes are employed both as electrolyte and as mechanical separator of the electrodes. [Pg.542]


See other pages where Solide fuel cell is mentioned: [Pg.33]    [Pg.533]    [Pg.1]    [Pg.17]    [Pg.90]    [Pg.2321]    [Pg.20]    [Pg.33]    [Pg.533]    [Pg.1]    [Pg.17]    [Pg.90]    [Pg.2321]    [Pg.20]    [Pg.213]    [Pg.580]    [Pg.584]    [Pg.2357]    [Pg.2367]    [Pg.2411]    [Pg.244]    [Pg.246]    [Pg.321]    [Pg.322]    [Pg.184]    [Pg.199]    [Pg.199]    [Pg.122]    [Pg.276]    [Pg.453]    [Pg.453]    [Pg.528]    [Pg.657]    [Pg.1105]    [Pg.1178]    [Pg.525]   


SEARCH



Advanced Inorganic Materials for Solid Oxide Fuel Cells

Anode for solid oxide fuel cells

Anodes solid oxide fuel cells

Bond Graph Modelling of a Solid Oxide Fuel Cell

Cathodes solid oxide fuel cells

Ceria in Solid Oxide Fuel Cell Electrodes

Compressive seals, for solid oxide fuel cells

Durability of solid oxide fuel cells

Early History of Solid Oxide Fuel Cell

Electrochemical devices high-temperature fuel cells solid

Electrodes for solid oxide fuel cells

Electrolyte fuel cells, solid

Electrolytes for solid oxide fuel cells

Energy conversion membranes solid oxide fuel cells

Energy high-temperature fuel cells solid

Fuel cell, high-temperature molten salt solid electrolyte

Fuel cell, solid polymer electrolyte

Fuel cell, solid polymer membrane types

Fuel cell, solid polymer nafion

Fuel cells high-pressure solid oxide

Fuel cells solid oxide

Fuel cells using solid cermet

Fuel cells with solid electrolytes

G. Kaur, Solid Oxide Fuel Cell Components

General Electric, solid oxide fuel cell

Hammou Solid Oxide Fuel Cells

High power density solid oxide fuel cell

High-Temperature Applications of Solid Electrolytes Fuel Cells, Pumping, and Conversion

Hydrogen solid alkaline membrane fuel cell

Hydrogen solid oxide fuel cell

Interconnectors for solid oxide fuel cell

Intermediate temperature solid oxide fuel cells

Intermediate temperature solid oxide fuel cells ITSOFC)

Intermediate-temperature solid oxide fuel cells IT-SOFCs)

Ionic conductivity solid oxide fuel cells

Japan solid oxide fuel cell development

Low-temperature solid oxide fuel cells

Micro-solid oxide fuel cells

On the Path to Practical Solid Oxide Fuel Cells

Overview of Intermediate-Temperature Solid Oxide Fuel Cells

Oxides solid-oxide fuel cells

Oxygen electrolytes, solid oxide fuel cell

Proton conducting solid oxide fuel cells

Proton exchange membrane fuel cell solid electrolyte

Research solid oxide fuel cells

SOFC cathodes Solid oxide fuel cells

Single-chamber solid oxide fuel cells

Single-chamber solid oxide fuel cells SC-SOFCs)

Sites solid oxide fuel cells

Solid Oxide Fuel Cell Electrode Fabrication by Infiltration

Solid Oxide Fuel Cell Materials and Performance

Solid Oxide Fuel Cell Maximum Voltage

Solid Oxide Fuel Cell alternative concepts

Solid Oxide Fuel Cell electrode

Solid Oxide Fuel Cell electrolyte, alternative

Solid Oxide Fuel Cells Past, Present and Future

Solid Oxide Fuel Cells: Materials Properties and Performance

Solid State Fuel Cell

Solid acid fuel cells

Solid alkaline membrane fuel cell (SAMFC

Solid electrolytes, applications fuel cell

Solid fuel cell

Solid fuel cell

Solid fuels

Solid oxide fuel cell Carbonate

Solid oxide fuel cell Direct conversion

Solid oxide fuel cell Future directions

Solid oxide fuel cell Introduction

Solid oxide fuel cell active parts

Solid oxide fuel cell anode materials

Solid oxide fuel cell anodes ceramic

Solid oxide fuel cell anodes conventional

Solid oxide fuel cell anodes perovskite-type materials

Solid oxide fuel cell carbon

Solid oxide fuel cell cathode materials

Solid oxide fuel cell cathodes conventional

Solid oxide fuel cell cathodes perovskite-type materials

Solid oxide fuel cell chromium

Solid oxide fuel cell companies

Solid oxide fuel cell competitiveness

Solid oxide fuel cell components

Solid oxide fuel cell conductor

Solid oxide fuel cell configurations

Solid oxide fuel cell contamination

Solid oxide fuel cell degradation

Solid oxide fuel cell deposition

Solid oxide fuel cell devices

Solid oxide fuel cell different types

Solid oxide fuel cell electrochemical reaction

Solid oxide fuel cell electrolyte

Solid oxide fuel cell electrolytes ceria-based

Solid oxide fuel cell electrolytes conventional

Solid oxide fuel cell electrolytes materials

Solid oxide fuel cell electrolytes perovskite-type materials

Solid oxide fuel cell electrolytes zirconia-based

Solid oxide fuel cell gadolinium-doped ceria

Solid oxide fuel cell interconnects

Solid oxide fuel cell issues

Solid oxide fuel cell membrane reactors

Solid oxide fuel cell performance

Solid oxide fuel cell reduction potential

Solid oxide fuel cell type membrane

Solid oxide fuel cell type membrane reactor

Solid oxide fuel cells -based

Solid oxide fuel cells Ceria-based materials

Solid oxide fuel cells PEMFCs, working with

Solid oxide fuel cells SOFCs)

Solid oxide fuel cells Westinghouse tubular cell

Solid oxide fuel cells Zirconia-based materials

Solid oxide fuel cells advantages

Solid oxide fuel cells and membranes

Solid oxide fuel cells apatites

Solid oxide fuel cells basic components

Solid oxide fuel cells cathode, electrochemical reactions

Solid oxide fuel cells cell design

Solid oxide fuel cells cell interconnection

Solid oxide fuel cells chemical thermodynamics

Solid oxide fuel cells combined cycle systems

Solid oxide fuel cells combined cycles

Solid oxide fuel cells conductivity

Solid oxide fuel cells development

Solid oxide fuel cells disadvantages

Solid oxide fuel cells drawbacks

Solid oxide fuel cells durability

Solid oxide fuel cells fabrication techniques

Solid oxide fuel cells finite element analysis

Solid oxide fuel cells first generation

Solid oxide fuel cells heat generation from

Solid oxide fuel cells high power

Solid oxide fuel cells high-temperature environment

Solid oxide fuel cells hybrid systems

Solid oxide fuel cells interconnection

Solid oxide fuel cells introduced

Solid oxide fuel cells manufacture

Solid oxide fuel cells manufacturing

Solid oxide fuel cells membrane

Solid oxide fuel cells merits

Solid oxide fuel cells metallic

Solid oxide fuel cells metallic interconnectors

Solid oxide fuel cells methane steam reforming

Solid oxide fuel cells methods

Solid oxide fuel cells modeling

Solid oxide fuel cells monolithic

Solid oxide fuel cells nanostructured materials

Solid oxide fuel cells operating principle

Solid oxide fuel cells operating temperature

Solid oxide fuel cells operation

Solid oxide fuel cells other materials

Solid oxide fuel cells overall chemical reaction

Solid oxide fuel cells oxygen reduction

Solid oxide fuel cells planar design

Solid oxide fuel cells potential application

Solid oxide fuel cells power plant, components

Solid oxide fuel cells power systems

Solid oxide fuel cells pressure

Solid oxide fuel cells reducing operation temperature

Solid oxide fuel cells requirements

Solid oxide fuel cells reversible

Solid oxide fuel cells schematic

Solid oxide fuel cells sealant

Solid oxide fuel cells stack design

Solid oxide fuel cells stationary

Solid oxide fuel cells stationary power generation, application

Solid oxide fuel cells structure

Solid oxide fuel cells systems

Solid oxide fuel cells temperature

Solid oxide fuel cells thickness

Solid oxide fuel cells thin-film

Solid oxide fuel cells tubular design

Solid oxide fuel cells tubular-type

Solid oxide fuel cells zirconia-based

Solid oxide fuel cells, SOFC

Solid oxide fuel cells, vii

Solid oxide fuel cells, viii

Solid polymer electrolyte fuel cells SPEFC)

Solid polymer fuel cell

Solid-oxide fuel cells electrical conductivity

Solid-oxide fuel cells fluorite

Solid-oxide fuel cells materials challenges

Solid-oxide fuel cells perovskite

Solid-oxide fuel cells reactions between

Solid-oxide fuel cells temperature stability

Solid-oxide fuel-cell applications

The High-Temperature Solid-Oxide (HTSO) Fuel Cell

The Solid Oxide Fuel Cell

Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell

Tubular solid oxide fuel cell

© 2024 chempedia.info