Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid oxide fuel cell carbon

One leading prototype of a high-temperature fuel cell is the solid oxide fuel cell, or SOFC. The basic principle of the SOFC, like the PEM, is to use an electrolyte layer with high ionic conductivity but very small electronic conductivity. Figure B shows a schematic illustration of a SOFC fuel cell using carbon monoxide as fuel. [Pg.504]

This presentation reports some studies on the materials and catalysis for solid oxide fuel cell (SOFC) in the author s laboratory and tries to offer some thoughts on related problems. The basic materials of SOFC are cathode, electrolyte, and anode materials, which are composed to form the membrane-electrode assembly, which then forms the unit cell for test. The cathode material is most important in the sense that most polarization is within the cathode layer. The electrolyte membrane should be as thin as possible and also posses as high an oxygen-ion conductivity as possible. The anode material should be able to deal with the carbon deposition problem especially when methane is used as the fuel. [Pg.95]

Molten Carbonate 923 K and Solid Oxide Fuel Cells, 1273 K... [Pg.56]

There are six different types of fuel cells (Table 1.6) (1) alkaline fuel cell (AFC), (2) direct methanol fuel cell (DMFC), (3) molten carbonate fuel cell (MCFC), (4) phosphoric acid fuel cell (PAFC), (5) proton exchange membrane fuel cell (PEMFC), and (6) the solid oxide fuel cell (SOFC). They all differ in applications, operating temperatures, cost, and efficiency. [Pg.17]

In the late 1980s, the DOE shifted to the development of advanced higher temperature fuel cell technologies, especially molten carbonate and solid oxide fuel cell systems. Federal funding for these technologies resulted in private commercial manufacturing facilities and commercial sales. [Pg.185]

For natural-gas-fuelled CHP plants, the same line of argumentation holds as for the stationary use of hydrogen from biomass. It is more reasonable to use natural gas directly than to convert it to hydrogen first and then to heat and electricity. High electrical efficiencies can be reached in the stationary sector by feeding natural gas to molten-carbonate fuel cells (MCFC) and solid-oxide fuel cells (SOFC). Molten-carbonate fuel cells have the added advantage of using C02 for the electrolyte (see also Chapter 13). [Pg.247]

In applications for static purpose, phosphoric add fuel cells have been constructed on a large scale for mainly test purposes. They have shown commerdal level performance and stability. More advanced types of fuel cells like molten carbonate fuel cells and solid oxide fuel cells are also under development for this purpose but are %t to reach that level. [Pg.26]

In fuel cells, the combustion energy of hydrocarbons can be converted directly into electrical energy. At the fuel cell anode, the hydrocarbon is in most cases converted to carbon dioxide because the intermediates are more easily oxidized than the starting hydrocarbon (Eq. 9a) at the fuel cell cathode oxygen is reduced to water (Eq. 9b). Most fuel cell research has involved the use of hydrogen as fuel. However, solid oxide fuels cells (SOCFs) can operate at higher temperature and can... [Pg.133]

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. [Pg.14]

ITSOFC The intermediate temperature solid oxide fuel cell combines the best available attributes of fuel cell technology development with intermediate temperature (600-800°C) operation. Ceramic components are used for electrodes and electrolytes carbon does not... [Pg.27]

In general, reforming of the CH4 fuel with excess H2O outside the cell has been practiced both in molten carbonate and solid oxide fuel cell systems in order to produce H2, more reactive on a fuel cell anode, and to avoid the possible deposition of C. This reforming reaction... [Pg.263]

Shah V.B. ASPEN Models for Solid Oxide Fuel Cell, Molten Carbonate Fuel Cell and Phosphoric Acid Fuel Cell Prepared by EG G Washington Analytical Services Center for the Morgantown Energy Technology Center under Contract No. DE-AC21-85MC21353, 1988. [Pg.282]

SOFC = solid oxide fuel cell MCFC = molten carbonate fuel cell PAFC = phosphoric acid fuel cell AFC = alkaline fuel cell PEMFC = proton exchange membrane fuel cell DMFC = direct methanol fuel cell SAMFC = Solid alkaline membrane fuel cell. [Pg.16]

Andreassi L., Toro C., Ubertini S., 2007. Modeling carbon monoxide direct oxidation in solid oxide fuel cells. In Proceedings ASME European Fuel Cell Technology and Applications Conference, EFC2007-39057. [Pg.90]


See other pages where Solid oxide fuel cell carbon is mentioned: [Pg.2411]    [Pg.184]    [Pg.199]    [Pg.199]    [Pg.453]    [Pg.528]    [Pg.613]    [Pg.617]    [Pg.55]    [Pg.285]    [Pg.442]    [Pg.578]    [Pg.205]    [Pg.220]    [Pg.220]    [Pg.299]    [Pg.301]    [Pg.105]    [Pg.184]    [Pg.633]    [Pg.160]    [Pg.18]    [Pg.38]    [Pg.274]    [Pg.47]    [Pg.230]    [Pg.28]    [Pg.23]    [Pg.133]    [Pg.10]    [Pg.909]    [Pg.129]    [Pg.148]    [Pg.252]    [Pg.184]   


SEARCH



Carbon fuel cells

Carbon fuels

Carbonate-fuel cell

Carbonization, fuel

Fuel cell oxidants

Fuel cells solid oxide

Fuel oxidation

Fuel solid oxide

Oxidants, solid

Oxidation cell

Oxidation solids

Oxide Fuel Cells

Oxide fuels

Oxidizing solid

Solid carbon

Solid fuel cell

Solid fuels

Solid oxide

Solid oxide cells

Solid oxidizers

Solide fuel cell

© 2024 chempedia.info