Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schematic illustration

Fig. VIII-1. Schematic illustration of the scanning tunneling microscope (STM) and atomic force microscope (AFM). (From Ref. 9.)... Fig. VIII-1. Schematic illustration of the scanning tunneling microscope (STM) and atomic force microscope (AFM). (From Ref. 9.)...
Fig. XVIII-14. Schematic illustration of the movement of NO molecules on a Pt(lll) surface. Molecules diffuse around on terraces, get trapped at steps, escape, and repeat the process many times before eventually desorbing. [Reprinted with permission from M. Cardillo, Langmuir, 1, 4 (1985) (Ref. 140). Copyright 1985, American Chemical Society.]... Fig. XVIII-14. Schematic illustration of the movement of NO molecules on a Pt(lll) surface. Molecules diffuse around on terraces, get trapped at steps, escape, and repeat the process many times before eventually desorbing. [Reprinted with permission from M. Cardillo, Langmuir, 1, 4 (1985) (Ref. 140). Copyright 1985, American Chemical Society.]...
Fig. XVIII-22. Schematic illustration of the steps that may be involved in a surface-mediated reaction initial adsorption, subsequent thermalization, diffusion and surface reaction, and desorption. (From Ref. 199 copyright 1984 by the AAAS.)... Fig. XVIII-22. Schematic illustration of the steps that may be involved in a surface-mediated reaction initial adsorption, subsequent thermalization, diffusion and surface reaction, and desorption. (From Ref. 199 copyright 1984 by the AAAS.)...
Figure Al.3.25. Schematic illustration of exciton binding energies in an insulator or semiconductor. Figure Al.3.25. Schematic illustration of exciton binding energies in an insulator or semiconductor.
Figure Al.7.3. Schematic illustration showing side views of (a) a biilk-tenninated surface, (b) a relaxed surface with oscillatory behaviour, and (c) a reconstructed surface. Figure Al.7.3. Schematic illustration showing side views of (a) a biilk-tenninated surface, (b) a relaxed surface with oscillatory behaviour, and (c) a reconstructed surface.
Figure Al.7.4. Schematic illustration of two Si atoms as they would be oriented on the (100) surface, (a) Bulk-tenuiuated structure showing two dangling bonds (lone electrons) per atom, (b) Synnnetric dimer, in which two electrons are shared and each atom has one remaining dangling bond, (c) Asynnnetric dimer in which two electrons pair up on one atom and the otiier has an empty orbital. Figure Al.7.4. Schematic illustration of two Si atoms as they would be oriented on the (100) surface, (a) Bulk-tenuiuated structure showing two dangling bonds (lone electrons) per atom, (b) Synnnetric dimer, in which two electrons are shared and each atom has one remaining dangling bond, (c) Asynnnetric dimer in which two electrons pair up on one atom and the otiier has an empty orbital.
Figure Al.7.5. Schematic illustration showing the top view of the Si(lOO) surface, (a) Bulk-tenninated structure. (b)Dimerized Si(100)-(2 x 1) structure. The dashed boxes show the two-dimensional surface unit cells. Figure Al.7.5. Schematic illustration showing the top view of the Si(lOO) surface, (a) Bulk-tenninated structure. (b)Dimerized Si(100)-(2 x 1) structure. The dashed boxes show the two-dimensional surface unit cells.
Figure A3.1.6. A schematic illustration of flow into and out of a small region. The hatched areas represent regions where particles enter and leave the region in time 5t. Figure A3.1.6. A schematic illustration of flow into and out of a small region. The hatched areas represent regions where particles enter and leave the region in time 5t.
Figure A3.1.8. Schematic illustration of tire direct and restituting collisions. Figure A3.1.8. Schematic illustration of tire direct and restituting collisions.
Figure A3.7.2. Schematic illustration of crossed molecular beams experimeut for F + H + 2 reaction. Figure A3.7.2. Schematic illustration of crossed molecular beams experimeut for F + H + 2 reaction.
Figure A3.9.1. Schematic illustrations of (a) the Langmuir-Hinshelwood and (b) Eley-Rideal mechanisms in gas-surface dynamics. Figure A3.9.1. Schematic illustrations of (a) the Langmuir-Hinshelwood and (b) Eley-Rideal mechanisms in gas-surface dynamics.
In moist enviromnents, water is present either at the metal interface in the fonn of a thin film (perhaps due to condensation) or as a bulk phase. Figure A3.10.1 schematically illustrates another example of anodic dissolution where a droplet of slightly acidic water (for instance, due to H2SO4) is in contact with an Fe surface in air [4]. Because Fe is a conductor, electrons are available to reduce O2 at the edges of the droplets. [Pg.922]

Figure A3.10.1 (a) A schematic illustration of the corrosion process for an oxygen-rich water droplet on an iron surface, (b) The process can be viewed as a short-circuited electrochemical cell [4],... Figure A3.10.1 (a) A schematic illustration of the corrosion process for an oxygen-rich water droplet on an iron surface, (b) The process can be viewed as a short-circuited electrochemical cell [4],...
Figure Bl.4.3. (a) A schematic illustration of the THz emission spectrum of a dense molecular cloud core at 30 K and the atmospheric transmission from ground and airborne altitudes (adapted, with pennission, from [17]). (b) The results of 345 GHz molecular line surveys of tlu-ee cores in the W3 molecular cloud the graphics at left depict tire evolutionary state of the dense cores inferred from the molecular line data [21],... Figure Bl.4.3. (a) A schematic illustration of the THz emission spectrum of a dense molecular cloud core at 30 K and the atmospheric transmission from ground and airborne altitudes (adapted, with pennission, from [17]). (b) The results of 345 GHz molecular line surveys of tlu-ee cores in the W3 molecular cloud the graphics at left depict tire evolutionary state of the dense cores inferred from the molecular line data [21],...
Figure Bl.13.8. Schematic illustration of (a) an antiphase doublet, (b) an in-phase doublet and (c) a differentially broadened doublet. The splitting between the two lines is in each case equal to J, the indirect spin-spin coupling constant. Figure Bl.13.8. Schematic illustration of (a) an antiphase doublet, (b) an in-phase doublet and (c) a differentially broadened doublet. The splitting between the two lines is in each case equal to J, the indirect spin-spin coupling constant.
Figure Bl.23.3. Schematic illustrations of backscattering with shadowing and direct recoiling with shadowing and blocking. Figure Bl.23.3. Schematic illustrations of backscattering with shadowing and direct recoiling with shadowing and blocking.
Figure Bl.23.5. Schematic illustration of tlie TOE-SARS spectrometer system. A = ion gun, B = Wien filter, C = Einzel lens, D = pulsing plates, E = pulsing aperture, E = deflector plates, G = sample, PI = electron multiplier detector with energy prefilter grid and I = electrostatic deflector. Figure Bl.23.5. Schematic illustration of tlie TOE-SARS spectrometer system. A = ion gun, B = Wien filter, C = Einzel lens, D = pulsing plates, E = pulsing aperture, E = deflector plates, G = sample, PI = electron multiplier detector with energy prefilter grid and I = electrostatic deflector.
Figure Bl.23.14. Schematic illustration of the Pt 111 ] -(1 x 1) surface. Arrows are drawn to indicate the nearest-neighbour first-first-, second-first-, and third-first-layer interatomic vectors. Figure Bl.23.14. Schematic illustration of the Pt 111 ] -(1 x 1) surface. Arrows are drawn to indicate the nearest-neighbour first-first-, second-first-, and third-first-layer interatomic vectors.
The most widely employed optical method for the study of chemical reaction dynamics has been laser-induced fluorescence. This detection scheme is schematically illustrated in the left-hand side of figure B2.3.8. A tunable laser is scanned tlnough an electronic band system of the molecule, while the fluorescence emission is detected. This maps out an action spectrum that can be used to detemiine the relative concentrations of the various vibration-rotation levels of the molecule. [Pg.2071]

Figure B2.5.1 schematically illustrates a typical flow-tube set-up. In gas-phase studies, it serves mainly two purposes. On the one hand it allows highly reactive shortlived reactant species, such as radicals or atoms, to be prepared at well-defined concentrations in an inert buffer gas. On the other hand, the flow replaces the time dependence, t, of a reaction by the dependence on the distance v from the point where the reactants are mixed by the simple transfomiation with the flow velocity vy... Figure B2.5.1 schematically illustrates a typical flow-tube set-up. In gas-phase studies, it serves mainly two purposes. On the one hand it allows highly reactive shortlived reactant species, such as radicals or atoms, to be prepared at well-defined concentrations in an inert buffer gas. On the other hand, the flow replaces the time dependence, t, of a reaction by the dependence on the distance v from the point where the reactants are mixed by the simple transfomiation with the flow velocity vy...
Figure B3.2.4. A schematic illustration of an energy-independent augmented plane wave basis fimction used in the LAPW method. The black sine fimction represents the plane wave, the localized oscillations represent the augmentation of the fimction inside the atomic spheres used for the solution of the Sclirodinger equation. The nuclei are represented by filled black circles. In the lower part of the picture, the crystal potential is sketched. Figure B3.2.4. A schematic illustration of an energy-independent augmented plane wave basis fimction used in the LAPW method. The black sine fimction represents the plane wave, the localized oscillations represent the augmentation of the fimction inside the atomic spheres used for the solution of the Sclirodinger equation. The nuclei are represented by filled black circles. In the lower part of the picture, the crystal potential is sketched.
Figure B3.2.12. Schematic illustration of geometries used in the simulation of the chemisorption of a diatomic molecule on a surface (the third dimension is suppressed). The molecule is shown on a surface simulated by (A) a semi-infinite crystal, (B) a slab and an embedding region, (C) a slab with two-dimensional periodicity, (D) a slab in a siipercell geometry and (E) a cluster. Figure B3.2.12. Schematic illustration of geometries used in the simulation of the chemisorption of a diatomic molecule on a surface (the third dimension is suppressed). The molecule is shown on a surface simulated by (A) a semi-infinite crystal, (B) a slab and an embedding region, (C) a slab with two-dimensional periodicity, (D) a slab in a siipercell geometry and (E) a cluster.
Figure C2.2.7. Schematic illustrating tire classification and nomenclature of discotic liquid crystal phases. For tire columnar phases, tire subscripts are usually used in combination witli each otlier. For example, denotes a rectangular lattice of columns in which tire molecules are stacked in a disordered manner (after [33])... Figure C2.2.7. Schematic illustrating tire classification and nomenclature of discotic liquid crystal phases. For tire columnar phases, tire subscripts are usually used in combination witli each otlier. For example, denotes a rectangular lattice of columns in which tire molecules are stacked in a disordered manner (after [33])...
Figure C2.5.4. Schematic illustration of the stages in the drastic reduction of sequence space in tire process of evolution to functionally competent protein stmctures. Figure C2.5.4. Schematic illustration of the stages in the drastic reduction of sequence space in tire process of evolution to functionally competent protein stmctures.
Figure C2.13.3. Schematic illustrations of various electric discharges (a) DC-glow discharge, R denotes a resistor (b) capacitively coupled RF discharge, MN denotes a matching network (c), (d) inductively coupled RF discharge, MN denotes matching network (e) dielectric barrier discharge. Figure C2.13.3. Schematic illustrations of various electric discharges (a) DC-glow discharge, R denotes a resistor (b) capacitively coupled RF discharge, MN denotes a matching network (c), (d) inductively coupled RF discharge, MN denotes matching network (e) dielectric barrier discharge.
Figure C2.13.5. Schematic illustrations of isotropic etching by a neutral gas and anisotropic plasma etching. Figure C2.13.5. Schematic illustrations of isotropic etching by a neutral gas and anisotropic plasma etching.
Figure C2.13.6. Schematic illustrations of plasma - assisted thin - film deposition. Figure C2.13.6. Schematic illustrations of plasma - assisted thin - film deposition.
Figure C3.6.13 Schematic illustration of how tire front instability arises for tire case a) Dg A-... Figure C3.6.13 Schematic illustration of how tire front instability arises for tire case a) Dg A-...
Torsion-bend and torsion-bend-bend terms may also be included the latter, for example would couple two angles A-B-C and B-C-D to a torsion angle A-B-C-D. Maple, Dinu and Hagler used quantum mechanics calculations to investigate which of the cross term are most important and suggested that the stretch-stretch, stretch-bend, bend-bend stretch-torsion and bend-bend-torsion were most important [Dinur and Hagler 1991 (schematically illustrated in Figure 4.13). [Pg.197]

Schematic illustration of the arrangements of ethane molecules in slits of varying sizes. In the slit of width ochJ tich methyl group is able to occupy a potential minimum from the pore (middle). [Pg.458]

Fig. 9.19 Schematic illustration of an energy surface. A high-temperature molecular dynamics simulation may be ah to ooercome very high energy barriers and so explore conformational space. On minimisation, the appropriate minimum energy conformation is obtained (arrcrws). Fig. 9.19 Schematic illustration of an energy surface. A high-temperature molecular dynamics simulation may be ah to ooercome very high energy barriers and so explore conformational space. On minimisation, the appropriate minimum energy conformation is obtained (arrcrws).
Fig. 10.20 Schematic illustration of the creation of a multiple sequence alignment for five sequences A-E. In the fi step sequences C and E are aligned. In the second step sequences A and D are aligned. In the third step the pair Cl aligned with the pair AD. Finally, the quartet CEAD is aligned with B. Fig. 10.20 Schematic illustration of the creation of a multiple sequence alignment for five sequences A-E. In the fi step sequences C and E are aligned. In the second step sequences A and D are aligned. In the third step the pair Cl aligned with the pair AD. Finally, the quartet CEAD is aligned with B.
Schematics illustrating the contributions to band broadening due to (a) multiple paths, (b) longitudinal diffusion, and (c) mass transfer. Schematics illustrating the contributions to band broadening due to (a) multiple paths, (b) longitudinal diffusion, and (c) mass transfer.
Schematic illustrations of the effect of temperature and surface density (time) on the ratio of two isotopes, (a) shows that, generally, there is a fractionation of the two isotopes as time and temperature change the ratio of the two isotopes changes throughout the experiment and makes difficult an assessment of their precise ratio in the original sample, (b) illustrates the effect of gradually changing the temperature of the filament to keep the ratio of ion yields linear, which simplifies the task of estimating the ratio in the original sample. The best method is one in which the rate of evaporation is low enough that the ratio of the isotopes is virtually constant this ratio then relates exactly to the ratio in the original sample. Schematic illustrations of the effect of temperature and surface density (time) on the ratio of two isotopes, (a) shows that, generally, there is a fractionation of the two isotopes as time and temperature change the ratio of the two isotopes changes throughout the experiment and makes difficult an assessment of their precise ratio in the original sample, (b) illustrates the effect of gradually changing the temperature of the filament to keep the ratio of ion yields linear, which simplifies the task of estimating the ratio in the original sample. The best method is one in which the rate of evaporation is low enough that the ratio of the isotopes is virtually constant this ratio then relates exactly to the ratio in the original sample.
A schematic illustration of a typical inlet apparatus for separating volatile hydrides from the analyte solution, in which they are generated upon reduction with sodium tetrahydroborate. When the mixed analyte solution containing volatile hydrides enters the main part of the gas/liquid separator, the volatiles are released and mix with argon sweep and makeup gas, with which they are transported to the center of the plasma. The unwanted analyte solution drains from the end of the gas/liquid separator. The actual construction details of these gas/liquid separators can vary considerably, but all serve the same purpose. In some of them, there can be an intermediate stage for removal of air and hydrogen from the hydrides before the latter are sent to the plasma. [Pg.100]

Figure 4.1 Schematic illustration of possible changes in the specific volume of a polymer with temperature. See text for a description of the various lettered phenomena. Figure 4.1 Schematic illustration of possible changes in the specific volume of a polymer with temperature. See text for a description of the various lettered phenomena.
Figure 4.13 Schematic illustration of the leading edge of a lathlike crystal within a spherulite. Figure 4.13 Schematic illustration of the leading edge of a lathlike crystal within a spherulite.
Figure 4.16 Schematic illustration showing how an experimental plot of modulus against log t (a) can be telescoped (b) by shifting successvie segments by an amount designated as log a. Figure 4.16 Schematic illustration showing how an experimental plot of modulus against log t (a) can be telescoped (b) by shifting successvie segments by an amount designated as log a.

See other pages where Schematic illustration is mentioned: [Pg.75]    [Pg.872]    [Pg.900]    [Pg.1237]    [Pg.2077]    [Pg.2131]    [Pg.2802]    [Pg.2926]    [Pg.32]    [Pg.198]    [Pg.294]    [Pg.477]    [Pg.492]   
See also in sourсe #XX -- [ Pg.6 , Pg.8 ]




SEARCH



Aluminium schematic diagrams illustrating

Cell division schematic illustration

Coincidence schematic illustrations

Composite membranes schematic illustration

Definition schematic illustration

Deformation schematic illustration

Discrimination schematic illustration

Dispersion types, schematic illustration

Emulsifier schematic illustration

Emulsion schematic illustration

Grain schematic illustration

High schematic illustration

Imprinting procedures, schematic illustration

Palladium schematic illustration

Phase separation schematic illustration

Polymers schematic illustration

Premix schematic illustration

Removal from water, schematic illustration

Scanning probe, schematic illustration

Schematic Illustration of Point Defects

Schematic illustration of elution chromatography. Three solutes are separating depending on the affinity to stationary phase at different times

Schematic illustration of intensity interference effects

Schematic illustration of rotational autoionization in para

Schematic illustration three-dimensional network

Schematic illustration, Fig

Separator schematic illustration

Tunneling microscope, schematic illustration

© 2024 chempedia.info