Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid oxide fuel cells ionic conductivity

One leading prototype of a high-temperature fuel cell is the solid oxide fuel cell, or SOFC. The basic principle of the SOFC, like the PEM, is to use an electrolyte layer with high ionic conductivity but very small electronic conductivity. Figure B shows a schematic illustration of a SOFC fuel cell using carbon monoxide as fuel. [Pg.504]

Today, the term solid electrolyte or fast ionic conductor or, sometimes, superionic conductor is used to describe solid materials whose conductivity is wholly due to ionic displacement. Mixed conductors exhibit both ionic and electronic conductivity. Solid electrolytes range from hard, refractory materials, such as 8 mol% Y2C>3-stabilized Zr02(YSZ) or sodium fT-AbCb (NaAluOn), to soft proton-exchange polymeric membranes such as Du Pont s Nafion and include compounds that are stoichiometric (Agl), non-stoichiometric (sodium J3"-A12C>3) or doped (YSZ). The preparation, properties, and some applications of solid electrolytes have been discussed in a number of books2 5 and reviews.6,7 The main commercial application of solid electrolytes is in gas sensors.8,9 Another emerging application is in solid oxide fuel cells.4,5,1, n... [Pg.91]

Double Substitution In such processes, two substitutions take place simultaneously. For example, in perovskite oxides, La may be replaced by Sr at the same time as Co is replaced by Fe to give solid solutions Lai Sr Coi yFey03 5. These materials exhibit mixed ionic and electronic conduction at high temperatures and have been used in a number of applications, including solid oxide fuel cells and oxygen separation. [Pg.425]

Solid mixed ionic-electronic conductors (MIECs) exhibit both ionic and electronic (electron-hole) conductivity. Naturally, in any material there are in principle nonzero electronic and ionic conductivities (a i, a,). It is customary to limit the use of the term MIEC to those materials in which a, and 0, 1 do not differ by more than two orders of magnitude. It is also customary to use the term MIEC if a, and Ogi are not too low (o, a i 10 S/cm). Obviously, there are no strict rules. There are processes where the minority carriers play an important role despite the fact that 0,70 1 exceeds those limits and a, aj,i< 10 S/cm. In MIECs, ion transport normally occurs via interstitial sites or by hopping into a vacant site or a more complex combination based on interstitial and vacant sites, and electronic (electron/hole) conductivity occurs via delocalized states in the conduction/valence band or via localized states by a thermally assisted hopping mechanism. With respect to their properties, MIECs have found wide applications in solid oxide fuel cells, batteries, smart windows, selective membranes, sensors, catalysis, and so on. [Pg.436]

Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC) The electrolyte and electrode materials in this fuel cell are basically the same as used in the TSOFC. The ITSOFC operates at a lower temperature, however, typically between 600 to 800°C. For this reason, thin film technology is being developed to promote ionic conduction alternative electrolyte materials are also being developed. [Pg.19]

Tubular Solid Oxide Fuel Cell (TSOFC) The electrolyte in this fuel cell is a solid, nonporous metal oxide, usually Y203-stabilized Z1O2. The cell operates at 1000°C where ionic conduction by oxygen ions takes place. Typically, the anode is Co-Zr02 or Ni-Zr02 cermet, and the cathode is Sr-doped LaMnOs. [Pg.19]

A solid oxide fuel cell (SOFC) consists of two electrodes anode and cathode, with a ceramic electrolyte between that transfers oxygen ions. A SOFC typically operates at a temperature between 700 and 1000 °C. at which temperature the ceramic electrolyte begins to exhibit sufficient ionic conductivity. This high operating temperature also accelerates electrochemical reactions therefore, a SOFC does not require precious metal catalysts to promote the reactions. More abundant materials such as nickel have sufficient catalytic activity to be used as SOFC electrodes. In addition, the SOFC is more fuel-flexible than other types of fuel cells, and reforming of hydrocarbon fuels can be performed inside the cell. This allows use of conventional hydrocarbon fuels in a SOFC without an external reformer. [Pg.521]

A comprehensive analysis of solid oxide fuel cells phenomena requires an effective multidisciplinary approach. Chemical reactions, electrical conduction, ionic conduction, gas phase mass transport, and heat transfer take place simultaneously and are tightly coupled. [Pg.52]

Yasuda, I. and Hishinuma, M., Electrical conductivity and chemical stability of calcium chromate hydroxyl apatite, Cas(Cr04)30H, and problems caused by the apatite formation at the electrode/separator interface in solid oxide fuel cells, Solid State Ionics 80, 1995, 141. [Pg.394]

The difficulties in the development of HTSO fuel cells are in the area of stability of materials rather than in catalysis. Different materials, some of them ionic conductors with no electronic conductivity and others electronic conductors with no ionic conductivity, must be compatible with each other chemically at a high temperature and mechanically during temperature cycling. Improvements in materials are steadily made, but the more sophisticated materials developed for this purpose tend to increase the cost. Once the materials problems have been overcome, the inherent simplicity of the design and operation of high temperature solid oxide fuel cells may make them the most useful... [Pg.254]

The low ionic resistivities of these materials (reported to be under 10 Q cm at 1000°C in some compositions) make them very attractive candidates for use in electrochemical devices such as the solid oxide fuel cell. Their proton conductivity is highly dependent on the partial pressure of water in the atmosphere. Whether these materials exhibit longterm stability in highly oxidizing and/or highly reducing atmospheres remains to be seen. Many of the preparation techniques discussed for the oxygen ion conductors should be applicable to this relatively new class of ionic conductors. [Pg.382]

Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C.B., Prinz, F.B. Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 2005, 98,103513. [Pg.229]

Uchida, H., Yoshida, M., Watanabe, M. Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of various cathodes in solid oxide fuel cells. J. Electrochem. Soc. 1999,146, 1-7. [Pg.234]

Another type of electrical conductivity observed in ceramics is ionic conductivity, which often occurs appreciably at elevated temperature a widely used material exhibiting this behavior is zirconia doped with other oxides such as calcia (CaO) or yttria (Y2O3). For this material, atomic oxygen is the mobile ionic species. Doped zirconia finds widespread use as oxygen sensors, especially as part of automobile emission control systems, where the oxygen content of the exhaust gas is monitored to control the air-to-fuel ratio. Other applications of ionic conducting ceramics are as the electrolyte phases in solid-oxide fuel cells and in sodium-sulfur batteries. [Pg.422]

Since these first reports, Iwahara and other investigators have studied the conductivities (both ionic and electronic), conduction mechanism, deuterium isotope effect, and thermodynamic stability of these materials. The motivation for most of this work derives from the desire to utilize these materials for high temperature, hydrogen-fiieled solid oxide fuel cells. In a reverse operation mode, if metal or metal oxide electrodes are deposited onto a dense pellet of this material and heated to temperature T, the application of an electric potential to the electrodes will cause a hydrogen partial pressure difference across the pellet according to the Nemst equation ... [Pg.159]


See other pages where Solid oxide fuel cells ionic conductivity is mentioned: [Pg.236]    [Pg.525]    [Pg.597]    [Pg.132]    [Pg.292]    [Pg.88]    [Pg.1]    [Pg.3]    [Pg.310]    [Pg.17]    [Pg.55]    [Pg.78]    [Pg.82]    [Pg.88]    [Pg.39]    [Pg.299]    [Pg.52]    [Pg.137]    [Pg.605]    [Pg.371]    [Pg.379]    [Pg.380]    [Pg.381]    [Pg.547]    [Pg.28]    [Pg.301]    [Pg.301]    [Pg.11]    [Pg.169]    [Pg.171]    [Pg.132]    [Pg.1814]    [Pg.200]    [Pg.345]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Conductance cell

Conducting solids

Conductivity ionic solids

Conductivity oxides

Fuel cell oxidants

Fuel cells solid oxide

Fuel oxidation

Fuel solid oxide

Ionic conductance

Ionic conducting

Ionic conduction

Ionic conductivity

Oxidants, solid

Oxidation cell

Oxidation solids

Oxide Fuel Cells

Oxide fuels

Oxides ionic

Oxidizing solid

Solid conduction

Solid fuel cell

Solid fuels

Solid oxide

Solid oxide cells

Solid oxide fuel cells conductivity

Solid oxidizers

Solide fuel cell

Solids, conductance

© 2024 chempedia.info