Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrix assisted desorption+ionization

Elhanany, E. Barak, R. Fisher, M. Kobiler, D. Altboum, Z. Detection of specific Bacillus anthracis spore biomakers by matrix-assisted desorption/ionization time-of-flight mass spectrometry. Rapid Comm. Mass Spectrom. 2001,15, 2110-2116. [Pg.273]

Dare, D. I Sutton, H. E. Keys, C. J. Shah, H. N. Wells, G. McDowall, M. A. Optimisation of a database for rapid identification of intact bacterial cells of Escherichia coli by matrix-assisted desorption ionization time-of-flight mass spectrometry, Proc. 51st ASMS Conference, Montreal, Quebec, Canada, June 8-12, 2003. [Pg.298]

Daniel JM, Ehala S, Eriess SD, Zenobi R. 2004. On-line atmospheric pressure matrix-assisted desorption/ionization mass spectrometry. Analyst 129 574. [Pg.170]

Electrospray ionization and matrix-assisted desorption ionization were both introduced around the same time, in the late 1980s. In fact matrix-assisted laser desorption ionization (MALDI) was first mentioned in the literature in 1987 (Karas et al., 1987). In the years prior to that, there were limited reports of the application of laser desorption MS. Early developments in MALDI focused primarily on macromolecules, particularly peptides and proteins. Historically, MALDI ion sources have predominantly been coupled to time-of-flight (TOF) instruments. TOF requires precise timed ionization events, and since ions are generated in MALDI by a pulsed desorption, this combination is complementary. Mass spectra generated by MALDI can be relatively simple, containing predominantly singly charged ions. The importance of both ESI and MALDI are well proven in the analysis of biomolecules, and both techniques were awarded the Nobel Prize for chemistry in 2002 (Chapter 1). [Pg.342]

The self-association by hydrogen bonding of phenol-terminated polybisphenol A carbonate chains, leading to formation of macromolecnlar aggregates of higher hydrodynamic volume, was confirmed by MS, applying the matrix-assisted desorption-ionization (MALDI) method. MALDI is a sensitive method for detection of polymer association in dilute solution (see also Section FV.C.S.a) . [Pg.1000]

Matrix-assisted desorption-ionization (MALDT) Laser beam... [Pg.552]

Analysis of the mixture using matrix-assisted desorption ionization mass spectrometry (section 5.3) allows for direct sequence determination from the snccessive mass differences of the peptide ladder. The application of the volatile trifluoroethyl isothiocyanate results in a significant optimization of this procedure and allows for peptide sequencing at the femtomole level (Bartlet-Jones et al., 1994). C-terminal ladder sequencing uses ammonium thiocyanate in acetic anhydride coupled with mass spectrometric analysis of truncated peptides (Thiede et al, 1997). Matrix-assisted desorption ionization instruments with delayed extraction (Brown and Leimon, 1995) allow for the discrimination of aU amino acids, except Leu and He. [Pg.101]

There were also attempts to calibrate the SEC columns with help of broad molar mass dispersity poplymers but this is less lehable. The most common and well credible SEC cahbration standards are linear polystyrenes, PS, which are prepared by the anionic polymerizatioa As indicated in section 11.7, according to lUPAC, the molar mass values determined by means of SEC based on PS calibration standards are to be designated polystyrene equivalent molar masses . Other common SEC calibrants are poly(methyl methaciylate)s, which are important for eluents that do not dissolve polystyrenes, such as hexafluoroisopropanol, further poly(ethylene oxide)s, poly(vinyl acetate)s, polyolefins, dextrans, pullulans, some proteins and few others. The situation is much more complicated with complex polymers such as copolymers. For example, block copolymers often contain their parent homopolymers (see sections 11.8.3, 11.8.6 and 11.9). The latter are hardly detectable by SEC, which is often apphed for copolymer characterization by the suppliers (compare Figure 16). Therefore, it is hardly appropriate to consider them standards. Molecules of statistical copolymers of the same both molar mass and overall chemical composition may well differ in their blockiness and therefore their coils may assume distinct size in solution. In the case of complex polymers and complex polymer systems, the researchers often seek support in other characterization methods such as nuclear magnetic resonance, matrix assisted desorption ionization mass spectrometry and like. [Pg.283]

In 1981 Barber and Liu and coworkers [1,2] independently introduced the concept of employing matrix-assisted desorption/ionization where the absorption of the matrix is chosen to coincide with the wavelength of the employed laser to assist in the volatilization of materials. In 1988 Tanaka, Hillenkamp and coworkers [3,4] employed the laser as the energy source giving birth to matrix-assisted laser/ desorption mass spectroscopy (MALDI MS). [Pg.329]

Stevenson, E. Breuker, K. Zenobi, R. Internal energies of analyte ions generated from different matrix-assisted desorption/ionization matrices. J. Mass Spectrom. 2000, 35, 1035-1041. [Pg.177]

Macha, S. Limbach, P. Matrix-assisted desorption/ ionization (MALDI) mass spectrometry of polymers. Curr. Opin. Solid State Mater. Sci. 2002, 6, 213-220. [Pg.243]

Gabeuca, V. Schulz, E. Karas, M. Internal energy build-up in matrix-assisted desorption/ionization. [Pg.244]

Redeker, V. Touil.Ec, J.-Y. Vmh, J. Rossier, J. Soyez, D. Combination of peptide profiling by matrix-assisted desorption/ionization Time-of-flight mass spectrometry and immuno detection on single glands or cells. Anal. Chem. 1998, 70, 1805-1811. [Pg.259]

Mass spectrometry requires that the material being studied be converted into a vapor. Great strides have been taken in recent years to address this problem, especially in enticing large, thermally fragile (bio)molecules into the vapor state. Matrix assisted laser ionization-desorption (MALDI) and electrospray ionization (ESI) are two current forefront methods that accomplish this task. Even components of bacteria and intact viruses are being examined with these approaches. John B. Fenn and Koichi Tanaka shared in the award of a Nobel Prize in 2002 for their respective contributions to development of electrospray ionization and soft laser desorption. [Pg.62]

Mass spectrometry and gas-phase ion chemistry of phenols concerns this class of compounds and, in particular, the various types of gaseous ions formed from them, as objects of fundamental interest and analytical signihcance. However, in the special case of phenols, a mass spectrometry with phenols has been developed. As mentioned in the Introduction, one of the modern methodologies for the formation of ions from polar and/or high-molecular mass, and thus non-volatile, organic and bioorganic compounds, relies on the use of various phenolic compounds as matrices for ion generation. Matrix-assisted laser ionization/desorption has become one of the major essential ioniza-... [Pg.323]

Ambient MS is another advance in the field. It allows the analysis of samples with little or no sample preparation. Following the introduction of desorption electrospray ionization (DESI) [108,109], direct analysis in real time (DART) [110], and desorption atmospheric pressure chemical ionization (DAPCI) [111, 112], a number of ambient ionization methods have been introduced. They include electrospray-assisted laser desorption/ionization (ELDI) [113], matrix-assisted laser desorption electrospray ionization (MALDESI) [114], atmospheric solids analysis probe (ASAP) [115], jet desorption ionization (JeDI) [116], desorption sonic spray ionization (DeSSI) [117], field-induced droplet ionization (FIDI) [118], desorption atmospheric pressure photoionization (DAPPI) [119], plasma-assisted desorption ionization (PADI) [120], dielectric barrier discharge ionization (DBDI) [121], and the liquid microjunction surface sampling probe method (LMJ-SSP) [122], etc. All these techniques have shown that ambient MS can be used as a rapid tool to provide efficient desorption and ionization and hence to allow mass spectrometric characterization of target compounds. [Pg.41]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization. FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization.
Until about the 1990s, visible light played little intrinsic part in the development of mainstream mass spectrometry for analysis, but, more recently, lasers have become very important as ionization and ablation sources, particularly for polar organic substances (matrix-assisted laser desorption ionization, MALDI) and intractable solids (isotope analysis), respectively. [Pg.119]

Some solid materials are very intractable to analysis by standard methods and cannot be easily vaporized or dissolved in common solvents. Glass, bone, dried paint, and archaeological samples are common examples. These materials would now be examined by laser ablation, a technique that produces an aerosol of particulate matter. The laser can be used in its defocused mode for surface profiling or in its focused mode for depth profiling. Interestingly, lasers can be used to vaporize even thermally labile materials through use of the matrix-assisted laser desorption ionization (MALDI) method variant. [Pg.280]

El = electron ionization Cl = chemical ionization ES = electrospray APCI = atmospheric-pressure chemical ionization MALDI = matrix-assisted laser desorption ionization PT = plasma torch (isotope ratios) TI = thermal (surface) ionization (isotope ratios). [Pg.280]

Ionization can be improved in many cases by placing the sample in a matrix formed from sinapic acid, nicotinic acid, or other materials. This variant of laser desorption is known as matrix-assisted laser desorption ionization (MALDI). The vaporized acids transfer protons to sample molecules (M) to produce protonated ions [M + H]+. [Pg.384]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

The three techniques — laser desorption ionization, laser ablation with secondary ionization, and matrix-assisted laser desorption — are all used for mass spectrometry of a wide variety of substances from rock, ceramics, and bone to proteins, peptides, and oligonucleotides. [Pg.399]

Laser-desorption mass spectrometry (LDMS) or matrix-assisted laser desorption ionization (MALDI) coupled to a time-of-flight analyzer produces protonated or deprotonated molecular ion clusters for peptides and proteins up to masses of several thousand. [Pg.417]

MALDI. matrix-assisted laser desorption ionization... [Pg.446]

Matrix-assisted laser desorption/ionization (MALDI) is widely used for the detection of organic molecules. One of the limitations of the method is a strong matrix background in low-mass (up to 500-700 Da) range. In present work an alternative approach based on the application of rough matrix-less surfaces and known as surface-assisted laser desoi ption/ionization (SALDI), has been applied. [Pg.140]

Electron impact (El), or Efectrospray ionization (ESI), or Matrix-assisted laser desorption ionization (MALDI)... [Pg.409]

Most biochemical analyses by MS use either electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALD1), typically linked to a time-of-flight (TOF) mass analyzer. Both ESI and MALDl are "soft" ionization methods that produce charged molecules with little fragmentation, even with biological samples of very high molecular weight. [Pg.417]


See other pages where Matrix assisted desorption+ionization is mentioned: [Pg.137]    [Pg.313]    [Pg.657]    [Pg.912]    [Pg.83]    [Pg.137]    [Pg.313]    [Pg.657]    [Pg.912]    [Pg.83]    [Pg.532]    [Pg.425]    [Pg.1331]    [Pg.9]    [Pg.136]    [Pg.153]    [Pg.548]    [Pg.433]   


SEARCH



Atmospheric pressure matrix-assisted laser desorption/ionization

Desorption ionization

Detectors matrix-assisted laser desorption ionization

Electrospray ionization MALDI mass Matrix-assisted laser desorption

Electrospray ionization Matrix-assisted laser desorption

Fragmentation matrix assisted laser desorption/ionization mass

Imaging mass spectrometry matrix-assisted laser desorption/ionization

Infrared matrix-assisted laser desorption/ionization mass

Infrared-matrix-assisted laser-desorption ionization

Instrumentation matrix-assisted laser desorption ionization

Ionization methods matrix-assisted laser desorption

Ionization techniques matrix assisted laser desorption

Irradiation-matrix-assisted laser desorption ionization

MALDI, Matrix assisted laser desorption/ionization spectrometry

MALDI-TOF (matrix assisted laser desorption ionization-time

MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight

MALDI-TOF-MS (matrix-assisted laser desorption ionization time-of-flight mass

MS, matrix-assisted laser desorption ionization

Mass spectrometry matrix-assisted laser desorption ionization

Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS)

Matrix assisted

Matrix assisted laser desorption and ionization MALDI)

Matrix assisted laser desorption ionization MALDI) mass spectrometry

Matrix assisted laser desorption ionization Proteomics

Matrix assisted laser desorption ionization sample preparation

Matrix assisted laser desorption/ionization linear

Matrix assisted laser desorption/ionization peptide mapping

Matrix assisted laser desorption/ionization reflectron

Matrix assisted laser desorption/ionization spectrometry

Matrix ionization

Matrix-assisted laser desorption and ionization

Matrix-assisted laser desorption ionization

Matrix-assisted laser desorption ionization (MALDI fragment generation

Matrix-assisted laser desorption ionization Fourier transform mass spectrometry

Matrix-assisted laser desorption ionization MALDI)

Matrix-assisted laser desorption ionization MALDI) methods

Matrix-assisted laser desorption ionization MALDI-TOF)

Matrix-assisted laser desorption ionization advances

Matrix-assisted laser desorption ionization anthocyanins

Matrix-assisted laser desorption ionization automation

Matrix-assisted laser desorption ionization carotenoids

Matrix-assisted laser desorption ionization chemical structures

Matrix-assisted laser desorption ionization data acquisition

Matrix-assisted laser desorption ionization description

Matrix-assisted laser desorption ionization experiment

Matrix-assisted laser desorption ionization imaging process

Matrix-assisted laser desorption ionization in-source decay

Matrix-assisted laser desorption ionization mass

Matrix-assisted laser desorption ionization mass analyzers used with

Matrix-assisted laser desorption ionization mass spectrometry instrumentation

Matrix-assisted laser desorption ionization mass spectroscopy

Matrix-assisted laser desorption ionization principle

Matrix-assisted laser desorption ionization process

Matrix-assisted laser desorption ionization time-of-flight mass

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

Matrix-assisted laser desorption ionization, MALD

Matrix-assisted laser desorption ionization-time of flight

Matrix-assisted laser desorption, atmospheric ionization

Matrix-assisted laser desorption-ionization MALDI) mass spectroscopy

Matrix-assisted laser desorption/ionization Fourier transform

Matrix-assisted laser desorption/ionization MALDI matrices

Matrix-assisted laser desorption/ionization MALDI) spectrometry, degradation

Matrix-assisted laser desorption/ionization accuracy

Matrix-assisted laser desorption/ionization acquisition

Matrix-assisted laser desorption/ionization analysis

Matrix-assisted laser desorption/ionization and electrospray

Matrix-assisted laser desorption/ionization applications

Matrix-assisted laser desorption/ionization atmospheric pressure-MALDI

Matrix-assisted laser desorption/ionization biomolecules

Matrix-assisted laser desorption/ionization category

Matrix-assisted laser desorption/ionization chemical images

Matrix-assisted laser desorption/ionization crystallization

Matrix-assisted laser desorption/ionization delayed extraction

Matrix-assisted laser desorption/ionization development

Matrix-assisted laser desorption/ionization diseases

Matrix-assisted laser desorption/ionization in imaging mass spectrometry

Matrix-assisted laser desorption/ionization instrument

Matrix-assisted laser desorption/ionization interfaces

Matrix-assisted laser desorption/ionization invention

Matrix-assisted laser desorption/ionization lateral resolution

Matrix-assisted laser desorption/ionization mass spectra

Matrix-assisted laser desorption/ionization matrices used

Matrix-assisted laser desorption/ionization measurement

Matrix-assisted laser desorption/ionization mechanisms

Matrix-assisted laser desorption/ionization membrane

Matrix-assisted laser desorption/ionization molar masses

Matrix-assisted laser desorption/ionization oligonucleotide

Matrix-assisted laser desorption/ionization poly

Matrix-assisted laser desorption/ionization polymers

Matrix-assisted laser desorption/ionization pulsed

Matrix-assisted laser desorption/ionization schematic

Matrix-assisted laser desorption/ionization sourc

Matrix-assisted laser desorption/ionization spatial resolution

Matrix-assisted laser desorption/ionization spectra

Matrix-assisted laser desorption/ionization surface preparation

Matrix-assisted laser desorption/ionization tandem mass

Matrix-assisted laser desorption/ionization tandem time of flight

Matrix-assisted laser desorption/ionization terminator

Matrix-assisted laser desorption/ionization time

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy

Matrix-assisted laser desorption/ionization-imaging mass

Matrix-assisted laser desorption/ionization-imaging mass applications

Matrix-assisted laser desorption/ionization-imaging mass methods

Matrix-assisted laser desorption—ionization compositional analysis

Matrix-assisted laser-desorption ionization MALDI) mass spectroscopy, group

Matrix-assisted laser-desorption ionization mass mapping

Matrix-assisted laser-desorption ionization plate

Matrix-assisted laser-desorption ionization possibilities

Matrix-assisted laser-desorption/ionization-mass spectroscopy analysis

Matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry

UV matrix-assisted laser desorption/ionization

© 2024 chempedia.info