Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion sources ionization

Watson et al. (1985) performed analysis of conjugated steroids by coupling EG to MS by means of a thermospray (Th)-LC/MS interface. In their studies, negative ion Th-mass spectra were recorded for several steroid conjugates. This interface vaporizes the sample before it passes through a small orifice at the tip of a heated stainless steel tube in the ion source. Ionization occurs at the same time, usually promoted by a volatile buffer, such as ammonium acetate. [Pg.189]

Ion source. Ionization and formation of excited ionic states can be accomplished by any of the methods described earlier in this section (e.g., electron impact). [Pg.111]

When we examine each of these essential mass spectrometer functions in detail, we see that the mass spectrometer is somewhat more complex than just described. Before the ions can be formed, a stream of molecules must be introduced into the ion source (ionization chamber) where the ionization takes place. A sample inlet system provides this stream of molecules. [Pg.108]

The construction and functioning of a modern GC-TOF mass spectrometer with TAD is shown in Fig. 6. The molecules exiting from the GC are transferred into the vacuum of the ion source, ionized by collision with an energetic focused electron beam, and extracted from the source 5000 times a second by application of a single high electric field. This high extraction field removes the detrimental... [Pg.118]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

Figure Bl.7.1. Schematic diagram of an electron ionization ion source source block (1) filament (2) trap electrode (3) repeller electrode (4) acceleration region (5) focusing lens (6). Figure Bl.7.1. Schematic diagram of an electron ionization ion source source block (1) filament (2) trap electrode (3) repeller electrode (4) acceleration region (5) focusing lens (6).
The above Cl reactions will occur if they are exothennic. In order for these reactions to occur with high efficiency, the pressure in the ion source must be raised to the milliTorr level. Also, the reagent species are often introduced in large excess so that they are preferentially ionized by the electron beam. [Pg.1331]

Brodbelt J, Liou C-C and Donovan T 1991 Selective adduct formation by dimethyl ether chemical ionization is a quadrupole ion trap mass spectrometer and a conventional ion source Ana/. Chem. 63 1205-9... [Pg.1359]

This chapter should be read in conjunction with Chapter 3, Electron Ionization. In electron ionization (El), a high vacuum (low pressure), typically 10 mbar, is maintained in the ion source so that any molecular ions (M +) formed initially from the interaction of an electron beam and molecules (M) do not collide with any other molecules before being expelled from the ion source into the mass spectrometer analyzer (see Chapters 24 through 27, which deal with ion optics). [Pg.1]

Decomposition (fragmentation) of a proportion of the molecular ions (M +) to form fragment ions (A B+, etc.) occurs mostly in the ion source, and the assembly of ions (M +, A+, etc.) is injected into the mass analyzer. For chemical ionization (Cl), the Initial ionization step is the same as in El, but the subsequent steps are different (Figure 1.1). For Cl, the gas pressure in the ion source is typically increased to 10 mbar (and sometimes even up to atmospheric pressure) by injecting a reagent gas (R in Figure 1.1). [Pg.1]

Much of the energy deposited in a sample by a laser pulse or beam ablates as neutral material and not ions. Ordinarily, the neutral substances are simply pumped away, and the ions are analyzed by the mass spectrometer. To increase the number of ions formed, there is often a second ion source to produce ions from the neutral materials, thereby enhancing the total ion yield. This secondary or additional mode of ionization can be effected by electrons (electron ionization, El), reagent gases (chemical ionization. Cl), a plasma torch, or even a second laser pulse. The additional ionization is often organized as a pulse (electrons, reagent gas, or laser) that follows very shortly after the... [Pg.10]

Electron ionization occurs when an electron beam crosses an ion source (box) and interacts with sample molecules that have been vaporized into the source. Where the electrons and sample molecules interact, ions are formed, representing intact sample molecular ions and also fragments produced from them. These molecular and fragment ions compose the mass spectrum, which is a correlation of ion mass and its abundance. El spectra of tens of thousands of substances have been recorded and form the basis of spectral libraries, available either in book form or stored in computer memory banks. [Pg.15]

For nonvolatile or thermally labile samples, a solution of the substance to be examined is applied to the emitter electrode by means of a microsyringe outside the ion source. After evaporation of the solvent, the emitter is put into the ion source and the ionizing voltage is applied. By this means, thermally labile substances, such as peptides, sugars, nucleosides, and so on, can be examined easily and provide excellent molecular mass information. Although still FI, this last ionization is referred to specifically as field desorption (FD). A comparison of FI and FD spectra of D-glucose is shown in Figure 5.6. [Pg.26]

One of the first successful techniques for selectively removing solvent from a solution without losing the dissolved solute was to add the solution dropwise to a moving continuous belt. The drops of solution on the belt were heated sufficiently to evaporate the solvent, and the residual solute on the belt was carried into a normal El (electron ionization) or Cl (chemical ionization) ion source, where it was heated more strongly so that it in turn volatilized and could be ionized. However, the moving-belt system had some mechanical problems and could be temperamental. The more recent, less-mechanical inlets such as electrospray have displaced it. The electrospray inlet should be compared with the atmospheric-pressure chemical ionization (APCI) inlet, which is described in Chapter 9. [Pg.55]

The particle beam — after linear passage from the evacuation chamber nozzle, through the first and second skimmers, and into the end of the ion source — finally passes through a heated grid immediately before ionization. The heated grid has the effect of breaking up most of the residual small clusters, so residual solvent evaporates and a beam of solute molecules enters the ionization chamber. [Pg.79]

Having considered the various parts of a dynamic-FAB system (atom gun, ionization, and matrix), it is now necessary to see how these are put together in a working inlet/ion source interface. [Pg.83]

A further important property of the two instruments concerns the nature of any ion sources used with them. Magnetic-sector instruments work best with a continuous ion beam produced with an electron ionization or chemical ionization source. Sources that produce pulses of ions, such as with laser desorption or radioactive (Californium) sources, are not compatible with the need for a continuous beam. However, these pulsed sources are ideal for the TOF analyzer because, in such a system, ions of all m/z values must begin their flight to the ion detector at the same instant in... [Pg.157]

A major advantage of the TOF mass spectrometer is its fast response time and its applicability to ionization methods that produce ions in pulses. As discussed earlier, because all ions follow the same path, all ions need to leave the ion source at the same time if there is to be no overlap between m/z values at the detector. In turn, if ions are produced continuously as in a typical electron ionization source, then samples of these ions must be utihzed in pulses by switching the ion extraction field on and off very quickly (Figure 26.4). [Pg.192]

As described above, the mobile phase carrying mixture components along a gas chromatographic column is a gas, usually nitrogen or helium. This gas flows at or near atmospheric pressure at a rate generally about 0,5 to 3.0 ml/min and evenmally flows out of the end of the capillary column into the ion source of the mass spectrometer. The ion sources in GC/MS systems normally operate at about 10 mbar for electron ionization to about 10 mbar for chemical ionization. This large pressure... [Pg.254]

As each mixture component elutes and appears in the ion source, it is normally ionized either by an electron beam (see Chapter 3, Electron Ionization ) or by a reagent gas (see Chapter I, Chemical Ionization ), and the resulting ions are analyzed by the mass spectrometer to give a mass spectmm (Figure 36.4). [Pg.255]

In the earliest interface, a continuous moving belt (loop) was used onto which the liquid emerging from the chromatographic column was placed as a succession of drops. As the belt moved along, the drops were heated at a low temperature to evaporate the solvent and leave behind any mixture components. Finally, the dried components were carried into the ion source, where they were heated strongly to volatilize them, after which they were ionized. [Pg.263]

It is worth noting that some of these methods are both an inlet system to the mass spectrometer and an ion source at the same time and are not used with conventional ion sources. Thus, with electrospray, the process of removing the liquid phase from the column eluant also produces ions of any emerging mixture components, and these are passed straight to the mass spectrometer analyzer no separate ion source is needed. The particle beam method is different in that the liquid phase is removed, and any residual mixture components are passed into a conventional ion source (often electron ionization). [Pg.263]

When mass spectrometry was first used as a routine analytical tool, El was the only commercial ion source. As needs have increased, more ionization methods have appeared. Many different types of ionization source have been described, and several of these have been produced commercially. The present situation is such that there is now only a limited range of ion sources. For vacuum ion sources, El is still widely used, frequently in conjunction with Cl. For atmospheric pressure ion sources, the most frequently used are ES, APCI, MALDI (lasers), and plasma torches. [Pg.282]


See other pages where Ion sources ionization is mentioned: [Pg.782]    [Pg.365]    [Pg.907]    [Pg.445]    [Pg.782]    [Pg.365]    [Pg.907]    [Pg.445]    [Pg.1329]    [Pg.1330]    [Pg.1330]    [Pg.1331]    [Pg.1332]    [Pg.14]    [Pg.25]    [Pg.59]    [Pg.61]    [Pg.71]    [Pg.73]    [Pg.80]    [Pg.134]    [Pg.153]    [Pg.160]    [Pg.163]    [Pg.225]    [Pg.227]    [Pg.228]    [Pg.237]    [Pg.238]    [Pg.255]    [Pg.284]   
See also in sourсe #XX -- [ Pg.24 , Pg.35 ]

See also in sourсe #XX -- [ Pg.727 ]




SEARCH



Chemical ionization ion sources

Electron ionization ion source

Ion Sources Derived from Electrospray Ionization

Ion Sources and Methods of Ionization

Ionization sources

Ions/ionization

Layout of an Electron Ionization Ion Source

Overall Efficiency of an Electron Ionization Ion Source

© 2024 chempedia.info