Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Desorption atmospheric-pressure chemical ionization

El = electron ionization Cl = chemical ionization ES = electrospray APCI = atmospheric-pressure chemical ionization MALDI = matrix-assisted laser desorption ionization PT = plasma torch (isotope ratios) TI = thermal (surface) ionization (isotope ratios). [Pg.280]

Figure 2.1 Mass spectrometric approach. Dl, direct inlet GC, gas chromatography HPLC, high performance liquid chromatography CZE, capillary zone electrophoresis El, electron ionization Cl, chemical ionization ESI, electrospray ionization DESI, desorption electrospray ionization APCI, atmospheric pressure chemical ionization MALDI, matrix assisted laser desorption ionization B, magnetic analyzer E, electrostatic analyzer... Figure 2.1 Mass spectrometric approach. Dl, direct inlet GC, gas chromatography HPLC, high performance liquid chromatography CZE, capillary zone electrophoresis El, electron ionization Cl, chemical ionization ESI, electrospray ionization DESI, desorption electrospray ionization APCI, atmospheric pressure chemical ionization MALDI, matrix assisted laser desorption ionization B, magnetic analyzer E, electrostatic analyzer...
DGE a AC AMS APCI API AP-MALDI APPI ASAP BIRD c CAD CE CF CF-FAB Cl CID cw CZE Da DAPCI DART DC DE DESI DIOS DTIMS EC ECD El ELDI EM ESI ETD eV f FAB FAIMS FD FI FT FTICR two-dimensional gel electrophoresis atto, 10 18 alternating current accelerator mass spectrometry atmospheric pressure chemical ionization atmospheric pressure ionization atmospheric pressure matrix-assisted laser desorption/ionization atmospheric pressure photoionization atmospheric-pressure solids analysis probe blackbody infrared radiative dissociation centi, 10-2 collision-activated dissociation capillary electrophoresis continuous flow continuous flow fast atom bombardment chemical ionization collision-induced dissociation continuous wave capillary zone electrophoresis dalton desorption atmospheric pressure chemical ionization direct analysis in real time direct current delayed extraction desorption electrospray ionization desorption/ionization on silicon drift tube ion mobility spectrometry electrochromatography electron capture dissociation electron ionization electrospray-assisted laser desorption/ionization electron multiplier electrospray ionization electron transfer dissociation electron volt femto, 1CT15 fast atom bombardment field asymmetric waveform ion mobility spectrometry field desorption field ionization Fourier transform Fourier transform ion cyclotron resonance... [Pg.11]

Ion genera lion can be achieved in a number of ways electron impact (Eh ionization, chemical ionization (CI). fas I atom bombardment (FAB), matrix assisted taser desorption ionization (MAI.DI), eleclrospray ionization (ESI) and atmospheric pressure chemical ionization (APC I are the most common methods,... [Pg.149]

Figure A.3A.1 Flow chart illustrating the selection of a suitable ionization technique for the mass spectrometric analysis of a sample. Abbreviations APCI, atmospheric pressure chemical ionization Cl, chemical ionization El, electron impact FAB, fast atom bombardment MALDI, matrix-assisted laser desorption/ionization. Figure A.3A.1 Flow chart illustrating the selection of a suitable ionization technique for the mass spectrometric analysis of a sample. Abbreviations APCI, atmospheric pressure chemical ionization Cl, chemical ionization El, electron impact FAB, fast atom bombardment MALDI, matrix-assisted laser desorption/ionization.
Strege summarized the technique of high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) in dereplication of natural products. In contrast to earlier electron impact ionization (El), ESI technique is applicable to virtually any ion in solution with a soft ionization process. A comparison of ESI with fast atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), atmospheric pressure chemical ionization (APCI) and other techniques demonstrates its superior sensitivity, compatibility and reliability when coupled with HPLC [51]. [Pg.659]

These direct ion sources exist under two types liquid-phase ion sources and solid-state ion sources. In liquid-phase ion sources the analyte is in solution. This solution is introduced, by nebulization, as droplets into the source where ions are produced at atmospheric pressure and focused into the mass spectrometer through some vacuum pumping stages. Electrospray, atmospheric pressure chemical ionization and atmospheric pressure photoionization sources correspond to this type. In solid-state ion sources, the analyte is in an involatile deposit. It is obtained by various preparation methods which frequently involve the introduction of a matrix that can be either a solid or a viscous fluid. This deposit is then irradiated by energetic particles or photons that desorb ions near the surface of the deposit. These ions can be extracted by an electric field and focused towards the analyser. Matrix-assisted laser desorption, secondary ion mass spectrometry, plasma desorption and field desorption sources all use this strategy to produce ions. Fast atom bombardment uses an involatile liquid matrix. [Pg.15]

An ideal interface should not cause extra-column peak broadening. Historical interfaces include the moving belt and the thermospray. Common interfaces are electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCl). Several special interfaces include the particle beam—a pioneering technique that is still used because it is the only one that can provide electron ionization mass spectra. Others are continuous fiow fast atom bombardment (CF-FAB), atmospheric pressure photon ionization (APPI), and matrix-assisted laser desorption ionization (M ALDl). The two most common interfaces, ESI and APCI, were discovered in the late 1980s and involve an atmospheric pressure ionization (API) step. Both are soft ionization techniques that cause little or no fragmentation hence a fingerprint for qualitative identification is usually not apparent. [Pg.147]

Earlier methods of ionization applied to carotenoids, including electron impact (El), chemical ionization (Cl), a particle beam interface with El or Cl, and continuous-flow fast atom bombardment (CF-FAB), have been comprehensively reviewed elsewhere (van Breemen, 1996, 1997 Pajkovic and van Breemen, 2005). These techniques have generally been replaced by softer ionization techniques like electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and more recently atmospheric pressure photoionization (APPI). It should be noted that ESI, APCI, and APPI can be used as ionization methods with a direct infusion of an analyte in solution (i.e. not interfaced with an HPLC system), or as the interface between the HPEC and the MS. In contrast, matrix-assisted laser desorption ionization (MALDI) cannot be used directly with HPEC. [Pg.127]

Identification of the forms thus obtained using complementary molecule-specific techniques (nuclear magnetic resonance infrared [IR] matrix-assisted laser desorption/ionization electrospray ionization [ESl]/atmospheric pressure chemical ionization mass spectrometry [MS])... [Pg.335]

The dynamic development of mass spectrometry has had a huge impact on lipid analysis. Currently, a variety of suitable mass spectrometers is available. In principal, a mass spectrometer consists of an ion source, a mass analyzer, and an ion detector. The typical features of each instrument (Fig. 2) result mostly from the types of ion source and mass analyzer. To date, the ionization techniques apphed to lipid analysis include Electrospray Ionization (ESI or nano-ESI), Atmospheric Pressure Chemical Ionization (APCI), Matrix-Assisted Laser Desorption/Ionization... [Pg.927]

A variety of MS formats are widely accepted and applied in the pharmaceutical industry. The specific MS application is often defined by the sample introduction technique. The pharmaceutical applications highlighted in this article feature two types of sample introduction techniques dynamic and static. Dynamic sample introduction involves the use of high-performance liquid chromatography (HPLC) on-line with MS. The resulting liquid chromatography/mass spectrometry (LC/MS) format provides unique and enabling capabilities for pharmaceutical analysis. The electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) modes are the most widely used. Static sample introduction techniques primarily use matrix-assisted laser desorption/ionization (MALDI). ... [Pg.3419]

Note El is electron ionization, Cl is chemical ionization, FI/FD is field ionization/field desorption, APPI is atmospheric pressure photoionization, and APCI is atmospheric pressure chemical ionization. [Pg.354]

Three popular ionization techniques are electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and matrix-assisted laser desorption (MALDI). Electrospray is the most widely used ionization technique when performing LC-MS, and has proved to be a most versatile tool for soft ionization [72] of a large variety of analytes such as them described in paper I. Figure 6 shows the principle of the ESI. [Pg.33]

Wu, J. et al., High-throughput cytochrome P450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry, Anal. Chem., 79, 4657, 2007. [Pg.121]

One of the most significant developments in mass spectrometry in the recent years is the introduction of a new class of ionization methods where samples in either solid or liquid state can be directly ionized in their native environment under ambient conditions (rather than inside a mass spectrometer) without any sample preparation. This new class of ionization methods is often referred to as ambient ionization methods [1,2], Because these methods generally ionize analytes on the surface or near the surface of the samples at atmospheric pressure, they have also been called atmospheric pressure surface sampling/ionization methods or direct/open air ionization methods [3], Since the first reports on ambient ionization with desorption electrospray ionization (DESI) [4] and direct analysis in real time (DART) [5], numerous reports have been published on the applications of these new ionization methods as well as the introduction of many related ambient ionization methods such as desorption atmospheric pressure chemical ionization (DAPCI) [6], atmospheric solid analysis probe (ASAP) [7], and electrospray-assisted laser desorption/ionization (ELDI) [8], Recently, two reviews of the various established and emerging ambient ionization methods have been published [2,3],... [Pg.377]


See other pages where Desorption atmospheric-pressure chemical ionization is mentioned: [Pg.468]    [Pg.48]    [Pg.54]    [Pg.60]    [Pg.150]    [Pg.694]    [Pg.496]    [Pg.875]    [Pg.959]    [Pg.4]    [Pg.158]    [Pg.373]    [Pg.166]    [Pg.199]    [Pg.282]    [Pg.276]    [Pg.268]    [Pg.277]    [Pg.167]    [Pg.382]    [Pg.611]    [Pg.224]    [Pg.130]    [Pg.50]    [Pg.13]   
See also in sourсe #XX -- [ Pg.268 ]

See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Atmosphere pressure chemical ionization

Atmosphere, ionized

Atmospheric chemical ionization

Atmospheric ionization

Atmospheric pressure chemical

Atmospheric-pressure chemical ionization

Atmospheric-pressure desorption ionization

Atmospheric-pressure ionization

Chemical desorption

Chemical ionization

Chemical pressure

Desorption atmospheric pressure

Desorption atmospheric pressure chemical

Desorption chemical ionization

Desorption ionization

Ionized chemical

© 2024 chempedia.info