Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pseudomonas aeruginosas

Specific bacteriostatic activity against Escherichia coli (681, 896, 899), Staphylococcus aureus (681, 896), Cocci (900), Shigella dysenteriae (681), Salmonella ryphi (681), Proteus vulgaris (681), Pseudomonas aeruginosa (681), Streptococcus (889, 901, 902) and Pneumococcus (901-904). [Pg.152]

Porin channels are impHcated in the transport of cephalosporins because ceds deficient in porins are much more impermeable than are ceds that are rich in porins. The porins appear to function as a molecular sieve, adowing molecules of relatively low molecular weight to gain access to the periplasmic space by passive diffusion. In enterobacteria, a clear correlation exists between porin quantity and cephalosporin resistance, suggesting that the outer membrane is the sole barrier to permeabdity. However, such a relationship is not clearly defined for Pseudomonas aeruginosa where additional barriers may be involved (139,144,146). [Pg.30]

Continued efforts to improve the activity of the monobactams against nonfermenting gram-negative rods such as Pseudomonas aeruginosa led to the discovery of SQ 83,360 [104393-00-2] (58), C22H24N q0 2 2 3-hydroxy-4-pyridone containing monocarbam. The enhanced activity of SQ 83,360 is... [Pg.68]

Sudol uses fractions of coal tar rich in xylenols and ethylphenols. It is much more active and less corrosive than lysol, and remains more active in the presence of organic matter. The phenol coefficients of sudol against Mycobacterium tuberculosis, Staphylococcus aureus, and Pseudomonas aeruginosa are 6.3, 6, and 4, respectively. It also is slowly sporicidal (97). [Pg.126]

Whereas these preparations do not possess the high bacteriostatic activity of quaternary ammonium germicides, they have the alternate advantage of being rapidly functional in acid solution. In comparative experiments of several different disinfectants, the acid—anionic killed bacteria at lower concentration than five other disinfectants. Only sodium hypochlorite and an iodine product were effective at higher dilution than the acid—anionic. By the AO AC use dilution test, the acid—anionic killed Pseudomonas aeruginosa at 225 ppm. Salmonella choleraesuis at 175 ppm, and Staphylococcus aureus at 325 ppm (172). [Pg.130]

The ampholytes, which must be used in higher concentrations than many other disinfectants when employed at room temperature, are greatiy improved as the temperature is increased. At 20°C, 3250 ppm of Tego 51 killed Pseudomonas aeruginosa in 30 min, at 50°C it required only 100 ppm in the same time (184,185). [Pg.131]

Streptococcus pyogenes Streptococcusfaecalis and Staphylococcus aureus show a markedly greater susceptibihty to its action than Escherichia coli and Pseudomonas aeruginosa (205). Thiram has been used ia disiafectant soaps. [Pg.132]

Boumann, U., et al. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa, a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12 3357-3364, 1993. [Pg.87]

Aeruginosine A (254) (69JCS(C)2514) and B (255) (61MI2), shown in Scheme 83, are metabolites of the pyocyanine producing Pseudomonas aeruginosa. They are isoconjugate with the odd alternant 1-isopropenyl-anthracene anion (class 13). [Pg.138]

Pefloxacin (33) is the N-methyl analogue of norfloxacin (58) and is at least partly converted to it by metabolic enzymes in vivo. It has been launched in France for the treatment of a number of infections including those caused by sensitive strains of Pseudomonas aeruginosa. It can be synthesized starting with the Gould-Jacobs reaction of 3-chloro-4-fluoroaniline (28) and diethyl ethoxymethylenemalonate in an addition-elimination sequence leading to 29 which undergoes... [Pg.141]

Figure 15.7 Cliromatographic separation of cliiral hydroxy acids from Pseudomonas aeruginosa without (a) and with (h) co-injection of racemic standards. Peak identification is as follows 1, 3-hydroxy decanoic acid, methyl ester 2, 3-hydroxy dodecanoic acid, methyl ester 3, 2-hydroxy dodecanoic acid, methyl ester. Adapted from Journal of High Resolution Chromatography, 18, A. Kaunzinger et al., Stereo differentiation and simultaneous analysis of 2- and 3-hydroxyalkanoic acids from hiomemhranes hy multidimensional gas cliromatog-raphy , pp. 191 -193, 1995, with permission from Wiley-VCH. (continuedp. 419)... Figure 15.7 Cliromatographic separation of cliiral hydroxy acids from Pseudomonas aeruginosa without (a) and with (h) co-injection of racemic standards. Peak identification is as follows 1, 3-hydroxy decanoic acid, methyl ester 2, 3-hydroxy dodecanoic acid, methyl ester 3, 2-hydroxy dodecanoic acid, methyl ester. Adapted from Journal of High Resolution Chromatography, 18, A. Kaunzinger et al., Stereo differentiation and simultaneous analysis of 2- and 3-hydroxyalkanoic acids from hiomemhranes hy multidimensional gas cliromatog-raphy , pp. 191 -193, 1995, with permission from Wiley-VCH. (continuedp. 419)...
Benzyl- and Phenoxymethylpenicillins, Ampidllin, Carbenicillin Cephalosporin C Cephaloglycine, Cephaloridine, Cephalothin Hydrolysis Corresponding p-lactam ring cleavage products Escherichia coli Streptomyces aibus Pseudomonas aeruginosa Enterobacter cloacae Streptomyces sp. [Pg.187]


See other pages where Pseudomonas aeruginosas is mentioned: [Pg.823]    [Pg.24]    [Pg.93]    [Pg.295]    [Pg.309]    [Pg.474]    [Pg.466]    [Pg.481]    [Pg.303]    [Pg.27]    [Pg.29]    [Pg.30]    [Pg.39]    [Pg.62]    [Pg.62]    [Pg.148]    [Pg.123]    [Pg.125]    [Pg.125]    [Pg.126]    [Pg.126]    [Pg.129]    [Pg.132]    [Pg.135]    [Pg.136]    [Pg.196]    [Pg.338]    [Pg.514]    [Pg.313]    [Pg.206]    [Pg.211]    [Pg.244]    [Pg.247]    [Pg.141]    [Pg.107]    [Pg.298]    [Pg.206]    [Pg.206]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



0-antigenic polysaccharides Pseudomonas aeruginosa

Adhesion Pseudomonas aeruginosa

Algins Pseudomonas aeruginosa

Alkaline protease from Pseudomonas aeruginosa

Antigens Pseudomonas aeruginosa

Capsules Pseudomonas aeruginosa

Cystic fibrosis Pseudomonas aeruginosa

Cytochrome Pseudomonas aeruginosa

Cytochrome c peroxidase Pseudomonas aeruginosa

Detection of Pseudomonas aeruginosa

Gram-negative bacteria Pseudomonas aeruginosa

Lipase from Pseudomonas aeruginosa (PAL)

Meningitis Pseudomonas aeruginosa

Microbiological Pseudomonas aeruginosa

Naturally occurring Pseudomonas aeruginosa

Nitrite reductase (cytochrome Pseudomonas aeruginosa

Of Pseudomonas aeruginosa

Pathogenic bacteria Pseudomonas aeruginosa

Preservatives Pseudomonas aeruginosa

Pseudomona aeruginosa

Pseudomona aeruginosa

Pseudomonas aeruginosa

Pseudomonas aeruginosa

Pseudomonas aeruginosa 3-lactams active against

Pseudomonas aeruginosa Pyridine

Pseudomonas aeruginosa Subject

Pseudomonas aeruginosa action

Pseudomonas aeruginosa activity

Pseudomonas aeruginosa alcohol dehydrogenase

Pseudomonas aeruginosa antibacterial activity against

Pseudomonas aeruginosa antibiotic therapy

Pseudomonas aeruginosa antifungal activity against

Pseudomonas aeruginosa antimicrobial resistance

Pseudomonas aeruginosa antimicrobials effective against

Pseudomonas aeruginosa azurin

Pseudomonas aeruginosa bacterial activity

Pseudomonas aeruginosa biocide resistance

Pseudomonas aeruginosa biofilm

Pseudomonas aeruginosa biofilm formation

Pseudomonas aeruginosa burn wound infections

Pseudomonas aeruginosa cell envelope

Pseudomonas aeruginosa cepacia

Pseudomonas aeruginosa cephalosporin activity

Pseudomonas aeruginosa characteristics

Pseudomonas aeruginosa cystic fibrosis infections

Pseudomonas aeruginosa drugs against

Pseudomonas aeruginosa evaluation

Pseudomonas aeruginosa exotoxin

Pseudomonas aeruginosa extracellular polysaccharide

Pseudomonas aeruginosa filtrates

Pseudomonas aeruginosa fluorescens

Pseudomonas aeruginosa folliculitis

Pseudomonas aeruginosa gentamicin activity

Pseudomonas aeruginosa in cystic fibrosis

Pseudomonas aeruginosa infection treatment

Pseudomonas aeruginosa infections

Pseudomonas aeruginosa infections antibiotics

Pseudomonas aeruginosa infections bronchitis

Pseudomonas aeruginosa infections caused

Pseudomonas aeruginosa infections meningitis

Pseudomonas aeruginosa infections peritonitis

Pseudomonas aeruginosa infections pneumonia

Pseudomonas aeruginosa infections sepsis

Pseudomonas aeruginosa inhibition

Pseudomonas aeruginosa lipase

Pseudomonas aeruginosa lipase, directed evolution

Pseudomonas aeruginosa lower respiratory tract infection

Pseudomonas aeruginosa mechanism

Pseudomonas aeruginosa molecular properties

Pseudomonas aeruginosa nitrate reductase

Pseudomonas aeruginosa nitrite

Pseudomonas aeruginosa nitrite reductase

Pseudomonas aeruginosa operators

Pseudomonas aeruginosa polymyxin

Pseudomonas aeruginosa products

Pseudomonas aeruginosa properties

Pseudomonas aeruginosa purification

Pseudomonas aeruginosa putida

Pseudomonas aeruginosa resistance

Pseudomonas aeruginosa sources

Pseudomonas aeruginosa strain

Pseudomonas aeruginosa structure

Pseudomonas aeruginosa surfactant production

Pseudomonas aeruginosa tetracyclines

Pseudomonas aeruginosa transhydrogenase

Pseudomonas aeruginosa treated

Pseudomonas aeruginosa urinary tract infections

Pseudomonas aeruginosa virulence factors

Pseudomonas aeruginosa, acquisition

Pseudomonas aeruginosa, contamination

Pseudomonas aeruginosa, detection

Pseudomonas aeruginosa, lipase from

Pseudomonas aeruginosa, lipid

Pseudomonas aeruginosa, toxin produced

Pseudomonas aeruginosae

Pseudomonas aeruginosae

Pseudomonas pyocyaneus aeruginosa

Rhamnolipids from Pseudomonas aeruginosa strain

Serotypes Pseudomonas aeruginosa

Structural studies Pseudomonas aeruginosa

Structure Pseudomonas aeruginosa exotoxin

The Cytochrome cdi from Pseudomonas aeruginosa

© 2024 chempedia.info