Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stainless steels salts

Classify the following as element, compound, or mixture, and justify your classifications salt, stainless steel, tap water, sugar, vanilla extract, butter, maple syrup, aluminum, ice, milk, cherry-flavored cough drops. [Pg.68]

There are some differences in the behavior of alloys due to the variations in caustic composition among the three cell processes. These differences occur mostly in lower-grade applications using materials less robust than nickel. Monel, for example, is subject to liquid-metal cracking by mercury and its salts. Stainless steels seem to be equally affected by diaphragm- and mercury-cell caustic, but if the caustic is consumed in some application, the residual chloride from diaphragm-cell NaOH can cause stress corrosion cracking [146]. [Pg.953]

Stainless steels are resistant to corrosion by most salts. The exceptions are the halide salts that cause pitting, crevice corrosion, and SCC. Of these salts, those containing chlorides are the most corrosive, followed by fluoride, bromide, and iodide salts. Stainless steels with higher chromium, molybdenum, and nitrogen concentrations will resist pitting and crevice corrosion more effectively. Austenitic stainless steels with higher molybdenum and nickel, ferritic stainless steels with no nickel or copper, and duplex stainless steels will resist SCC. [Pg.588]

This last solution should be prepared slowly as it is quite exothermic. Set all three aside in a freezer. Now prepare the mixing apparatus which will be a stainless steel "mixing bowl" suspended In the ice/salt bath made earlier. We use a stainless steel bowl here so that heat transfer will be maximal, while preventing any corrosive interaction. A glass bowl will not be sufficient for larger scale preparations as it will not conduct heat fast enough to prevent the reactants from going over IOC (at which point the Haloamide will decompose and you ll have to start over). Take the Sodium Hydroxide solution out of the freezer once it is cool, but not cold. [Pg.262]

Preheat a water bath on the stove (or wherever) to about 80C and place the stainless steel mixing bowl in it. Once the temperature of the solution hits about 65C, take the bowl out and set aside while stirring all the while. This is where it rearranges, and the reaction is exothermic enough to sustain it s temperature nicely. If you find the temperature climbing past 80C, immerse the bowl into some cold waiter briefly. After about 15 minutes the temperature will start to fall, at which point you should transfer the whole mess to the distilling flask. Before you continue you need to choose whether you want to make the hydrochloride salt or the aqueous solution of Methylamine, though. [Pg.263]

Fluoridation of potable water suppHes for the prevention of dental caries is one of the principal uses for sodium fluoride (see Water, municipal WATER treatment). Use rate for this appHcation is on the order of 0.7 to 1.0 mg/L of water as fluoride or 1.5 to 2.2 mg/L as NaF (2). NaF is also appHed topically to teeth as a 2% solution (see Dentifrices). Other uses are as a flux for deoxidiziag (degassiag) rimmed steel (qv), and ia the resmelting of aluminum. NaF is also used ia the manufacture of vitreous enamels, ia pickling stainless steel, ia wood preservation compounds, caseia glues, ia the manufacture of coated papers, ia heat-treating salts, and as a component of laundry sours. [Pg.237]

Although Hitec is nonflammable, it is a strong oxidizer and supports the combustion of other materials. Consequendy, combustible materials must be excluded from contact with the molten salt. Hitec is compatible with carbon steel at temperatures up to 450°C. At higher temperatures, low alloy or austenitic stainless steel is recommended. Adding water to Hitec does not appreciably alter its corrosion behavior. [Pg.505]

In appHcations as hard surface cleaners of stainless steel boilers and process equipment, glycoHc acid and formic acid mixtures are particularly advantageous because of effective removal of operational and preoperational deposits, absence of chlorides, low corrosion, freedom from organic Hon precipitations, economy, and volatile decomposition products. Ammoniated glycoHc acid Hi mixture with citric acid shows exceUent dissolution of the oxides and salts and the corrosion rates are low. [Pg.516]

The composition of the builders in an alkaline cleaner is dependent on the metal substrate from which the soil is to be removed. For steel (qv) or stainless steel aggressive, ie, high pH, alkaline salts such as sodium or potassium hydroxide can be used as the main alkaline builder. For aluminum, zinc, brass, or tin plate, less aggressive (lower pH) builders such as sodium or potassium siUcates, mono- and diphosphates, borates, and bicarbonates are used. [Pg.220]

By contrast, HLW from LWR fuel reprocessing is stored ia cooled, well-agitated, stainless steel tanks as an acidic nitrate solution having relatively few sohds. Modem PUREX flow sheets minimise the addition of extraneous salts, and as a result the HLW is essentially a fission-product nitrate solution. Dissolver soHds are centrifuged from the feed stream and are stored separately. Thus the HLW has a low risk of compromising tank integrity and has a favorable composition for solidification and disposal (11). [Pg.207]

New Synthesis. Many attempts have been made to synthesize oxaUc acid by electrochemical reduction of carbon dioxide in either aqueous or nonaqueous electrolytes (53—57). For instance, oxaUc acid is prepared from CO2 as its Zn salt in an undivided ceU with Zn anodes and stainless steel cathodes ia acetonitrile containing (C4H2)4NC104 and current efficiency of >90% (53). Micropilot experiments and a process design were also made. [Pg.460]

A hst of polyol producers is shown in Table 6. Each producer has a varied line of PPO and EOPO copolymers for polyurethane use. Polyols are usually produced in a semibatch mode in stainless steel autoclaves using basic catalysis. Autoclaves in use range from one gallon (3.785 L) size in research faciUties to 20,000 gallon (75.7 m ) commercial vessels. In semibatch operation, starter and catalyst are charged to the reactor and the water formed is removed under vacuum. Sometimes an intermediate is made and stored because a 30—100 dilution of starter with PO would require an extraordinary reactor to provide adequate stirring. PO and/or EO are added continuously until the desired OH No. is reached the reaction is stopped and the catalyst is removed. A uniform addition rate and temperature profile is required to keep unsaturation the same from batch to batch. The KOH catalyst can be removed by absorbent treatment (140), extraction into water (141), neutralization and/or crystallization of the salt (142—147), and ion exchange (148—150). [Pg.353]

The formation of acids from heteroatoms creates a corrosion problem. At the working temperatures, stainless steels are easily corroded by the acids. Even platinum and gold are not immune to corrosion. One solution is to add sodium hydroxide to the reactant mixture to neutralize the acids as they form. However, because the dielectric constant of water is low at the temperatures and pressure in use, the salts formed have low solubiHty at the supercritical temperatures and tend to precipitate and plug reaction tubes. Most hydrothermal processing is oxidation, and has been called supercritical water oxidation. [Pg.369]

Anhydrous sulfonic acids, particularly linear alkylben2enesulfonic acids, are typically stored ia stainless steel containers, preferably type 304 or 316 stainless steel. Use of other metals, such as mild steel, contaminates the acid with iron (qv), causiag a darkening of the acid over time (27). The materials are usually viscous oils which may be stored and handled at 30—35°C for up to two months (27). AH other detergent-grade sulfonic acids, eg, alcohol sulfates, alcohol ether sulfates, alpha-olefin sulfonates, and alpha-sulfomethyl esters, are not stored owiag to iastabiUty. These are neutrali2ed to the desired salt. [Pg.98]

Lime-Sulfuric. Recovery of citric acid by calcium salt precipitation is shown in Figure 3. Although the chemistry is straightforward, the engineering principles, separation techniques, and unit operations employed result in a complex commercial process. The fermentation broth, which has been separated from the insoluble biomass, is treated with a calcium hydroxide (lime) slurry to precipitate calcium citrate. After sufficient reaction time, the calcium citrate slurry is filtered and the filter cake washed free of soluble impurities. The clean calcium citrate cake is reslurried and acidified with sulfuric acid, converting the calcium citrate to soluble citric acid and insoluble calcium sulfate. Both the calcium citrate and calcium sulfate reactions are generally performed in agitated reaction vessels made of 316 stainless steel and filtered on commercially available filtration equipment. [Pg.183]

Stainless steel or epoxy-lined tank cars and tank tmcks are recommended for shipping. Aluminum also has been used. The tank can be flushed with carbon dioxide before loading and blanketed with nitrogen after loading. Dmm shipments are recommended in epoxy-lined open-head dmms fitted with a bung. Dimer acids and their by-products contaminated with iron or copper show accelerated color deterioration. Exposure to these metals or their salts should be minimised. [Pg.116]

Greater deviations which are occasionally observed between two reference electrodes in a medium are mostly due to stray electric fields or colloid chemical dielectric polarization effects of solid constituents of the medium (e.g., sand [3]) (see Section 3.3.1). Major changes in composition (e.g., in soils) do not lead to noticeable differences of diffusion potentials with reference electrodes in concentrated salt solutions. On the other hand, with simple metal electrodes which are sometimes used as probes for potential controlled rectifiers, certain changes are to be expected through the medium. In these cases the concern is not with reference electrodes, in principle, but metals that have a rest potential which is as constant as possible in the medium concerned. This is usually more constant the more active the metal is, which is the case, for example, for zinc but not stainless steel. [Pg.87]

The 18-8 stainless steels pit severely in fatty acids, salt brines, and salt solutions. Often the solution for such chronic behavior is to switch to plastics or glass fibers that do not pit because they are made of more inert material. [Pg.259]

Although transformers suitable for other industrial installations are generally suitable for producing applications, certain options may be desirable— primarily due to environmental considerations. At locations subject to harsh environmental conditions, and particularly at locations subject to washdown with high-pressure hoses, non-ventilated enclosures are desirable, if not necessary. Likewise, at locations subjected to salt water and salt-laden air, it often is desirable to specify copper windings and lead wires. Most manufacturers provide standard units with aluminum windings and lead wires. Even if aluminum coils are used, it is almost always desirable to require stranded copper lead wires. This will lessen corrosion and loose terminal problems when transformers arc interconnected to the facility electrical system with copper conductors. If the transformers are to be installed outdoors in corrosive environments, cases should be of corrosion-resistant material (e.g., stainless steel) or be provided with an exterior coating suitable for the location. [Pg.541]

In areas where electrical equipment is exposed to contaminants, the selection of equipment whose contacts are oil-immersed or hermetically sealed can increase reliability and equipment life. Similarly, providing environmentally-controlled equipment rooms can greatly increase equipment life at locations where contaminants are prevalent. In offshore and other areas exposed to salt, type 316 stainless steel is often preferred over types 303 and 304, which will pit with time. Likewise, in similar locations, equipment fabricated from galvanized steel will corrode much more rapidly than equipment hot-dip galvanized after fabrication. [Pg.547]

If the column is contaminated with basic compounds, clean it with a concentrated salt solution at pH 3, e.g., 0.5-1.0 M K2SO4. Avoid the use of halides, as they will corrode stainless steel over time. [Pg.134]


See other pages where Stainless steels salts is mentioned: [Pg.274]    [Pg.274]    [Pg.164]    [Pg.376]    [Pg.262]    [Pg.149]    [Pg.167]    [Pg.233]    [Pg.508]    [Pg.516]    [Pg.226]    [Pg.1]    [Pg.207]    [Pg.131]    [Pg.10]    [Pg.85]    [Pg.169]    [Pg.109]    [Pg.90]    [Pg.207]    [Pg.293]    [Pg.90]    [Pg.365]    [Pg.212]    [Pg.71]    [Pg.24]    [Pg.427]    [Pg.486]    [Pg.458]    [Pg.361]   
See also in sourсe #XX -- [ Pg.588 ]




SEARCH



Molten salts type 304 stainless steel

© 2024 chempedia.info