Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salts halides

As already noted, the simple salts in this oxidation state are powerful oxidising agents and oxidise water. Since, also, Co(III) would oxidise any halide except fluoride to halogen, the only simple halide salt is C0F3. Cobalt(lll) Jluoride, obtained by reaction of fluorine with cobalt(II) fluoride it is a useful fluorinating agent. [Pg.402]

To isomerize safrole to isosafrole one would like to have pure safrole to start with. This, usually, is not the case. Quasi-pure safrole from sassafras oil is ok. Straight-up sassafras oil is probably ok too, though not recommended. The safrole is then refluxed (boiled under a condenser) in a saturated KOHyethanoI solution for about a day and that s it. The temperature of reflux is about 120-140°C owing to the fact that the ethanol (usually boiling around 65-70°C) is saturated with the halide salt. [Pg.39]

It is not difficult to incorporate this result into the general mechanism for hydrogen halide additions. These products are formed as the result of solvent competing with halide ion as the nucleophilic component in the addition. Solvent addition can occur via a concerted mechanism or by capture of a carbocation intermediate. Addition of a halide salt increases the likelihood of capture of a carbocation intermediate by halide ion. The effect of added halide salt can be detected kinetically. For example, the presence of tetramethylammonium... [Pg.355]

One-electron oxidation of carboxylate ions generates acyloxy radicals, which undergo decarboxylation. Such electron-transfer reactions can be effected by strong one-electron oxidants, such as Mn(HI), Ag(II), Ce(IV), and Pb(IV) These metal ions are also capable of oxidizing the radical intermediate, so the products are those expected from carbocations. The oxidative decarboxylation by Pb(IV) in the presence of halide salts leads to alkyl halides. For example, oxidation of pentanoic acid with lead tetraacetate in the presence of lithium chloride gives 1-chlorobutane in 71% yield ... [Pg.726]

In the absence of halide salts, the principal products may be alkanes, alkenes, or acetate esters. [Pg.726]

Wastewater occasionally contains hydrogen sulfide and nitrites. These contribute to higher halogen demands. Many of these reactions reduce halogens to halide salts. [Pg.479]

Vinylic fluorines offluoralkenes are replaced with chlorine or bromine when treated with lithium halide salts in methoxyethanol, dimethylformamide, and pyridine [77]. [Pg.381]

In some cases only the first step is required, as with the formation of ethylam-monium nitrate. In many cases the desired cation is commercially available at reasonable cost, most commonly as a halide salt, thus requiring only the anion exchange reaction. Examples of these are the symmetrical tetraalkylammonium salts and trialkylsulfonium iodide. [Pg.8]

The alkylation process possesses the advantages that (a) a wide range of cheap haloalkanes are available, and (b) the substitution reactions generally occur smoothly at reasonable temperatures. Furthermore, the halide salts formed can easily be converted into salts with other anions. Although this section will concentrate on the reactions between simple haloalkanes and the amine, more complex side chains may be added, as discussed later in this chapter. The quaternization of amines and phosphines with haloalkanes has been loiown for many years, but the development of ionic liquids has resulted in several recent developments in the experimental techniques used for the reaction. In general, the reaction may be carried out with chloroalkanes, bromoalkanes, and iodoalkanes, with the reaction conditions required becoming steadily more gentle in the order Cl Br I, as expected for nucleophilic substitution reactions. Fluoride salts cannot be formed in this manner. [Pg.9]

The halide salts are generally solids at room temperature, although some examples - such as e.g. the l-methyl-3-octylimidazolium salts - remain viscous oils even at room temperature. Crystallization can take some time to occur, however, and... [Pg.10]

Relatively little has been reported regarding the determination of the purity of the halide salts other than by standard spectroscopic measurements and microanalysis. This is largely because the halide salts are rarely used as solvents themselves, but are generally simply a source of the desired cation. Also, the only impurities likely to be present in any significant quantity are unreacted starting materials and residual reaction solvents. Thus, for most applications it is sufficient to ensure that they are free of these by use of FF NMR spectroscopy. [Pg.11]

The anion-exchange reactions of ionic liquids can really be divided into two distinct categories direct treatment of halide salts with Lewis acids, and the formation of ionic liquids by anion metathesis. These two approaches are dealt with separately, as quite different experimental methods are required for each. [Pg.12]

Without special drying procedures and completely inert handling, water is omnipresent in ionic liquids. Even the apparently hydrophobic ionic liquid [BMIM][(CF3S02)2N] saturates with about 1.4 mass% of water [15], a significant molar amount. For more hydrophilic ionic liquids, water uptake from air can be much greater. Imidazolium halide salts in particular are laiown to be extremely hygroscopic, one of the reasons why it is so difficult to make completely proton-free chloroaluminate ionic liquids. [Pg.27]

The alkylation of sodium 2-naphthoxide with benzyl bromide in tetrabutylam-monium and tetrabutylphosphonium halide salts was investigated by Brunet and Badri [50] (Scheme 5.1-21). The yields in this reaction were quantitative, and alkylation occurred predominantly on the oxygen atom of the naphthoxide ion (typically 93-97 %). The rate of the reaction was slower in the chloride salts, due to the benzyl bromide reacting with chloride ion to give the less reactive benzyl chloride. [Pg.185]

Ionic liquids formed by treatment of a halide salt with a Lewis acid (such as chloro-aluminate or chlorostannate melts) generally act both as solvent and as co-catalyst in transition metal catalysis. The reason for this is that the Lewis acidity or basicity, which is always present (at least latently), results in strong interactions with the catalyst complex. In many cases, the Lewis acidity of an ionic liquid is used to convert the neutral catalyst precursor into the corresponding cationic active form. The activation of Cp2TiCl2 [26] and (ligand)2NiCl2 [27] in acidic chloroaluminate melts and the activation of (PR3)2PtCl2 in chlorostannate melts [28] are examples of this land of activation (Eqs. 5.2-1, 5.2-2, and 5.2-3). [Pg.221]

As one would expect, in those cases in which the ionic liquid acts as a co-catalyst, the nature of the ionic liquid becomes very important for the reactivity of the transition metal complex. The opportunity to optimize the ionic medium used, by variation of the halide salt, the Lewis acid, and the ratio of the two components forming the ionic liquid, opens up enormous potential for optimization. However, the choice of these parameters may be restricted by some possible incompatibilities with the feedstock used. Undesired side reactions caused by the Lewis acidity of the ionic liquid or by strong interaction between the Lewis acidic ionic liquid and, for example, some oxygen functionalities in the substrate have to be considered. [Pg.222]

Acidic chloroaluminate ionic liquids have already been described as both solvents and catalysts for reactions conventionally catalyzed by AICI3, such as catalytic Friedel-Crafts alkylation [35] or stoichiometric Friedel-Crafts acylation [36], in Section 5.1. In a very similar manner, Lewis-acidic transition metal complexes can form complex anions by reaction with organic halide salts. Seddon and co-workers, for example, patented a Friedel-Crafts acylation process based on an acidic chloro-ferrate ionic liquid catalyst [37]. [Pg.225]

Nickel and nickel alloys generally possess good corrosion resistance to acidic, neutral and alkaline salts, including halides, that are not oxidising in character. Oxidising salts are usually corrosive towards Ni, Ni-Cu and Ni-Mo alloys, but not to Ni-Cr and Ni-Cr-Fe-Mo-Cu alloys unless they contain appreciable quantities of both oxidiser and halide ions, e.g. FeClj, CuClj, NaOCl. Ni-Cr-Mo alloys are among the few metallic materials that are resistant to oxidising halide salts. [Pg.791]


See other pages where Salts halides is mentioned: [Pg.179]    [Pg.210]    [Pg.417]    [Pg.928]    [Pg.928]    [Pg.929]    [Pg.937]    [Pg.2205]    [Pg.714]    [Pg.928]    [Pg.928]    [Pg.929]    [Pg.937]    [Pg.13]    [Pg.10]    [Pg.10]    [Pg.11]    [Pg.12]    [Pg.12]    [Pg.13]    [Pg.13]    [Pg.15]    [Pg.16]    [Pg.17]    [Pg.25]    [Pg.47]    [Pg.70]    [Pg.185]    [Pg.261]    [Pg.324]    [Pg.330]    [Pg.533]    [Pg.849]   
See also in sourсe #XX -- [ Pg.446 ]

See also in sourсe #XX -- [ Pg.195 ]

See also in sourсe #XX -- [ Pg.417 ]




SEARCH



© 2024 chempedia.info