Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of sodium hydroxide solutions

Hydrolysis to p-Nitroaniline. For this purpose use 70 sulphuric acid, the usual reagent employed for the hydrolysis of anilides (p. 108). Add 5 g. of the recrystallised />-nitro-acetanilide to 30 ml. of 70%sulphuric acid, and boil the mixture gently under a reflux water-condenser for 20 minutes. Then pour the clear hot solution into about 150 ml. of cold water, and finally add an excess of sodium hydroxide solution until precipitation of the yellow p-nitroaniline is complete. Coo the mixture in ice-water if necessary, and then filter at the pump, wash well... [Pg.168]

Add about 0 2 g. of ferrous sulphate crystals to the first portion of the filtrate contained in a boiling-tube. An immediate dark greenish-grey precipitate of ferrous hydroxide should occur if the mixture remains clear, add a few ml. of sodium hydroxide solution. Now boil the mixture gently for a few minutes to ensure formation of the ferrocyanide, cool under the tap, add one drop of ferric chloride solution, and then acidify... [Pg.322]

Benzoates. Alcohols react with benzoyl chloride in the presence of pyridine or of sodium hydroxide solution to produce esters of benzoic acid ... [Pg.263]

Dimethyl sulphate is of particular value for the methylation of phenols and sugars. The phenol is dissolved in a slight excess of sodium hydroxide solution, the theoretical quantity of dimethyl sulphate is added, and the mixture is heated on a water bath and shaken or stirred mechanically (compare Section IV, 104). Under these conditions only one of the methyl groups is utilised the methyl hydrogen sulphate formed in the reaction reacts with the alkali present. -... [Pg.303]

With a large excess of sodium hydroxide solution, the salt complex is decomposed and the free amine is liberated ... [Pg.559]

Benzylatnine. Warm an alcoholic suspension of 118-5 g. of finely-powdered benzyl phthalimide with 25 g. of 100 per cent, hydrazine hydrate (CAUTION corrosive liquid) a white, gelatinous precipitate is produced rapidly. Decompose the latter (when its formation appears complete) by heating with excess of hydrochloric acid on a steam bath. Collect the phthalyl hydrazide which separates by suction filtration, and wash it with a little water. Concentrate the filtrate by distillation to remove alcohol, cool, filter from the small amount of precipitated phthalyl hydrazide, render alkaline with excess of sodium hydroxide solution, and extract the liberated benzylamine with ether. Dry the ethereal solution with potassium hydroxide pellets, remove the solvent (compare Fig. //, 13, 4) on a water bath and finally distil the residue. Collect the benzylamine at 185-187° the 3ueld is 50 g. [Pg.569]

The experimental details for mono-M-propylanillne are as follows. Reflux a mixture of 230 g. of aniline and 123 g. of n-propyl bromide for 8-10 hours. Allow to cool, render the mixture alkafine, and add a solution of 150 g. of zinc chloride in 150 g. of water. Cool the mixture and stir after 12 hours, filter at the pump and drain well. Extract the thick paste several times with boiling light petroleum, b.p. 60-80° (it is best to use a Soxhlet apparatus), wash the combined extracts successively with water and dilute ammonia solution, and then dry over anhydrous potassium carbonate or anhydrous magnesium sulphate. Remove the solvent on a water bath, and distil the residue from a Claisen flask with fractionating side arm (well lagged). Collect the n-propyl-aniline at 218-220° the yield is 80 g. Treat the pasty solid zincichloride with an excess of. sodium hydroxide solution and steam distil 130 g. of pure aniline are recovered. [Pg.571]

Pure dialkylanilines may be prepared by refluxing the monoalkylaniline (1 mol) with an alkyl bromide (2 mols) for 20-30 hours the solid product is treated with excess of sodium hydroxide solution, the organic layer separated, dried and distilled. The excess of alkyl bromide paases over first, followed by the dialkylaniline. Di-n-propylaniline, b.p. 242-243°, and di-n-butylaniline b.p. 269-270°, are thus readily prepared. [Pg.572]

The density of fluorobenzene is about 1 -025 at room temperature it is important to use the correct strength of sodium hydroxide solution in order to obtain a clear separation of the two layers. [Pg.611]

Phenylhydrazine may be prepared by reducing phenyldiazonium chloride solution with excess of warm sodium sulphite solution, followed by acidification with hydrochloric acid, when the hydrochloride crystallises out on cooling. Treatment of the latter with excess of sodium hydroxide solution liberates the free base. The reaction is believed to proceed through the following stages —... [Pg.635]

Dissolve 1 g. of the secondary amine in 3-5 ml. of dilute hydrochloric acid or of alcohol (in the latter case, add 1 ml. of concentrated hydrochloric acid). Cool to about 5° and add 4-5 ml. of 10 per cent, sodium nitrite solution, and allow to stand for 5 minutes. Add 10 ml. of water, transfer to a small separatory funnel and extract the oil with about 20 ml. of ether. Wash the ethereal extract successively with water, dilute sodium hydroxide solution and water. Remove the ether on a previously warmed water bath no flames should be present in the vicinity. Apply Liebermann s nitroso reaction to the residual oil or solid thus. Place 1 drop or 0 01-0 02 g. of the nitroso compovmd in a dry test-tube, add 0 05 g. of phenol and warm together for 20 seconds cool, and add 1 ml. of concentrated sulphuric acid. An intense green (or greenish-blue) colouration will be developed, which changes to pale red upon pouring into 30-50 ml. of cold water the colour becomes deep blue or green upon adding excess of sodium hydroxide solution. [Pg.649]

The palladium - barium sulphate catalyst Is prepared by treating a suspension of20g. of barium sulphate (which has been precipitated in hot solution) in 400 ml. of hot water with a solution of I - 7 g. of palladium chloride (equivalent to I - 0 g. of palladium) in 50 ml. of water and with I - 5 ml. of 40 per cent, formaldehyde solution. The mixture is rendered faintly alkaline to litmus by the addition of sodium hydroxide solution and then boiled for a short time. When the supernatant liquid is clear, the grey precipitate is filtered oS, and wa.shed with hot water until the... [Pg.699]

Aromatic aldehydes react with the dimedone reagent (Section 111,70,2). All aromatic aldehydes (i) reduce ammoniacal silver nitrate solution and (ii) restore the colour of SchifiF s reagent many react with sodium bisulphite solution. They do not, in general, reduce Fehling s solution or Benedict s solution. Unlike aliphatic aldehydes, they usually undergo the Cannizzaro reaction (see Section IV,123) under the influence of sodium hydroxide solution. For full experimental details of the above tests, see under Ali-phalic Aldehydes, Section 111,70. They are easily oxidised by dilute alkaline permanganate solution at the ordinary temperature after removal of the manganese dioxide by sulphur dioxide or by sodium bisulphite, the acid can be obtained by acidification of the solution. [Pg.721]

Bfflizophenone condenses with hydroxylamine hydrochloride in the presence of excess of sodium hydroxide solution to 3deld benzophenone oxime, m.p. 142° ... [Pg.729]

Esters of /i-toluenesulphonic acid, which are of great value as alkylating agents, may be prepared by interaction of p-toluenesulphonyl chloride and the alcdiol in the presence of sodium hydroxide solution or of pyridine, for example ... [Pg.821]

A more active product is obtained by the following slight modification of the above procedure. Dissolve the succinimide in a slight molar excess of sodium hydroxide solution and add the bromine dissolved in an equal volume of carbon tetrachloride rapidly and with vigorous stirring. A finely crystalline white product is obtained. Filter with suction and dry thoroughly the crude product can be used directly. It may be recrystallised from acetic acid. [Pg.927]

Sodium Hypochlorite. The principal form of hypochlorite produced is sodium hypochlorite [7681-52-9] NaOCl. It is invariably made and used as an aqueous solution and is usually prepared by the chlorination of sodium hydroxide solutions as shown in equation 9, though other bases such as sodium carbonate can be used (30). [Pg.143]

Atropine causes dilation of the pupil of the eye. A drop or two of an aqueous solution, containing 1 part in 130,000 parts of water, introduced into the eye of a cat is sufficient to produce this effect. When warmed with sulphuric acid and a small crystal of potassium dichromate, atropine develops a bitter almond odour. Evaporated to dryness on a water-bath with concentrated nitric acid, it gives a residue which becomes violet on adding a drop of sodium hydroxide solution in alcohol (Vitali s test). With a solution of mercuric chloride atropine gives a yellow to red precipitate of mercuric oxide. [Pg.70]

Introduce 33.6 g (0.2 mol) of 1,3 -trimethoxybenzene and 100 ml of chlorobenzene Into a 500 ml three-neck flask with stirrer, hydrochloric acid bubbler and condenser. Stir to dissolve and edd 27.7 g of 4-pyrro idinobutyronitrile (from 4hydrochloric acid gas in for 4 hours. Cool to about 5°C and add 200 cm3 of water, g ir. Decanttheaqueouslayer,wash again with 150cm3 of water. Combine the aqueous layers, drive off the traces of chlorobenzene by distilling 150 cm3 Qf water, and heat under reflux for one hour. Cool and render alkaline by means of 60 ml of sodium hydroxide solution of 36° Baume. Extract twice with 100 ml of ether. Wash the ether with 100 ml of water. Dry the ether over sodium sulfate and slowly run in 50 ml of 5N hydrogen chloride solution in ether, at the boil. Cool in ice. Filter, wash with ether and dry in a vacuum oven. 33.6 g of crude product are obtained. Recrystallize from 200 ml of isopropanol in the presence of 3 SA carbon black. Filter. Wash and dry in a vacuum oven. [Pg.198]

Methyl-4(or 5)-nitroimidazole (127 g) is heated with ethylene chlorohydrin (795 g) for 18 hours at 128° to 130°C and the chlorohydrin (660 g) Is then distilled under reduced pressure (30 mm Hg). The residue is treated with water (300 cc) and filtered, and the filtrate is made alkaline by the addition of sodium hydroxide solution (d = 1.33, 100 cc). [Pg.1012]

A slight excess of 10 per cent barium chloride solution is added to the hot solution to precipitate the carbonate as barium carbonate, and the excess of sodium hydroxide solution immediately determined, without filtering off the precipitate, by titration with the same standard acid phenolphthalein or thymol blue is used as indicator. If the volume of excess of sodium hydroxide solution added corresponds to timL of 1M sodium hydroxide and u mL 1M acid corresponds to the excess of the latter, then v — v = hydrogencarbonate, and V— v — v ) = carbonate. [Pg.299]

Procedure. Prepare the CDTA solution (0.02M) by dissolving 6.880 g of the solid reagent in 50 mL of sodium hydroxide solution (1M) and making up to 1 L with de-ionised water the solution may be standardised against a standard calcium solution prepared from 2.00 g of calcium carbonate (see Section 10.61). The indicator is prepared by dissolving 0.5 g of the solid in 100 mL of water. [Pg.333]


See other pages where Of sodium hydroxide solutions is mentioned: [Pg.166]    [Pg.81]    [Pg.198]    [Pg.248]    [Pg.326]    [Pg.702]    [Pg.1010]    [Pg.338]    [Pg.1398]    [Pg.430]    [Pg.33]    [Pg.463]    [Pg.900]    [Pg.1440]    [Pg.1575]    [Pg.230]    [Pg.272]    [Pg.454]    [Pg.830]    [Pg.171]    [Pg.326]   


SEARCH



Hydroxides Sodium hydroxide

Sodium Hydroxide Solution

Sodium hydroxide

Sodium solutions

Solutions hydroxide

© 2024 chempedia.info