Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Products decomposition

Another important class of dryer is the fluidized-bed dryers. Some designs combine spray and fluidized-bed dryers. Choice between dryers is usually based on practicalities such as the materials handling characteristics, product decomposition, product physical form (e.g., if a porous granular material is required), etc. Also, dryer efficiency can be used to compare the performance of different dryer designs. This is usually defined as follows -. [Pg.91]

Unexpectedly we find that the bromate(V) ion in acid solution (i.e. effectively bromic(V) acid) is a more powerful oxidising agent than the chlorate(V) ion, CIO3. The halates(V) are thermally unstable and can evolve oxygen as one of the decomposition products. Potassium chlorate(V), when heated, first melts, then resolidifies due to the formation of potassium chlorate(VII) (perchlorate) ... [Pg.340]

The substance is pure, but on warming undergoes slight thermal decomposition before the melting-point is reached, and the decomposition products then act as impurities and depress the melting-point. [Pg.2]

The evolution of nitrogen is not always entirely satisfactory as a test owing to the possible evolution of gaseous decomposition products of nitrous acid itself. The test may be performed as follows. To i ml. of chilled concentrated sodium nitrite solution add i ml. of dilute acetic acid. Allow any preliminary evolution of gas to subside, and then add the mixed solution to a cold aqueous solution (or suspension) of the amide note the brisk effervescence. [Pg.360]

Sulfenamidothiazoles heated in acetic anhydride rearrange to 2-acetamido-5-thiophenoxythicLZoles (337) (Scheme 193) (32, 456, 457). Only decomposition products are found when these conditions are applied to 336 with X=C or methyl. Substitution in the 4-position of the thicLZole ring (R = methyl, phenyl), however, favors the rearrangement (see p. 82). [Pg.114]

Little work has been carried out on thiazole N-oxides. These products are unstable and breakdown by autoxidation to give thiazolium-A -oxide sulfates and other decomposition products (264). They are prepared by direct oxidation with hydrogen peroxide, or by tungstic acid (264, 265) or peracetic acid (265-267). [Pg.392]

Boiling point is given at atmospheric pressure (760 mm of mercury or 101 325 Pa) unless otherwise indicated thus 82 indicates that the boiling point is 82°C when the pressure is 15 mm of mercury. Also, subl 550 indicates that the compound sublimes at 550°C. Occasionally decomposition products are mentioned. [Pg.224]

Pentaeiythritol Tetranitrate. Specification-grade pentaerythritol tetranitrate (PETN) can be stored up to 18 months at 65°C without significant deterioration. However, many materials have been found to be incompatible with PETN and the presence of as Htfle as 0.01% occluded acid or alkah greatly accelerates decomposition. The decomposition of PETN is autocatalytic with reported kinetic constants oi E = 196.6 kJ/mol (47 kcal/mol) and Z = 6.31 x 10 . The decomposition products of PETN at 210°C in wt % are 47.7 NO, 21.0 CO, 11.8 NO2, 9.5 N2O, 6.3 CO2, 2.0 H2, and 1.6... [Pg.14]

The Beckstead-Derr-Price model (Fig. 1) considers both the gas-phase and condensed-phase reactions. It assumes heat release from the condensed phase, an oxidizer flame, a primary diffusion flame between the fuel and oxidizer decomposition products, and a final diffusion flame between the fuel decomposition products and the products of the oxidizer flame. Examination of the physical phenomena reveals an irregular surface on top of the unheated bulk of the propellant that consists of the binder undergoing pyrolysis, decomposing oxidizer particles, and an agglomeration of metallic particles. The oxidizer and fuel decomposition products mix and react exothermically in the three-dimensional zone above the surface for a distance that depends on the propellant composition, its microstmcture, and the ambient pressure and gas velocity. If aluminum is present, additional heat is subsequently produced at a comparatively large distance from the surface. Only small aluminum particles ignite and bum close enough to the surface to influence the propellant bum rate. The temperature of the surface is ca 500 to 1000°C compared to ca 300°C for double-base propellants. [Pg.36]

Antimony Oxide as a Primary Flame Retardant. Antimony oxide behaves as a condensed-phase flame retardant in cellulosic materials (2). It can be appHed by impregnating a fabric with a soluble antimony salt followed by a second treatment that precipitates antimony oxide in the fibers. When the treated fabric is exposed to a flame, the oxide reacts with the hydroxyl groups of the cellulose (qv) causing them to decompose endothermically. The decomposition products, water and char, cool the flame reactions while slowing the production and volatilization of flammable decomposition products (see Flaa retardants for textiles). [Pg.455]

Molybdenum trioxide is a condensed-phase flame retardant (26). Its decomposition products ate nonvolatile and tend to increase chat yields. Two parts of molybdic oxide added to flexible poly(vinyl chloride) that contains 30 parts of plasticizer have been shown to increase the chat yield from 9.9 to 23.5%. Ninety percent of the molybdenum was recovered from the chat after the sample was burned. A reaction between the flame retardant and the chlorine to form M0O2 012 H20, a nonvolatile compound, was assumed. This compound was assumed to promote chat formation (26,27). [Pg.458]

Molybdenum is also a smoke suppressant for poly(vinyl chloride). It promotes the formation of cis- rather than the trans-polymeric decomposition products which ate the precursors for smoke. The sources for molybdates ate Climax Performance Material Cotp. and Sherwin WiUiams. [Pg.458]

Studies on the kinetics of formation of S2F2Q and reviews of appHcable Hterature have been reported (124—126). Other work has concentrated on the use of cell culture evaluation methods for assessing cytotoxic activity of SF decomposition products (127,128). Several laboratories seek to provide methods for accurately determining S2F2Q in operating electrical units (57). [Pg.244]

The limitations of this reagent are several. It caimot be used to replace a single unactivated halogen atom with the exception of the chloromethyl ether (eq. 5) to form difluoromethyl fluoromethyl ether [461 -63-2]. It also caimot be used to replace a halogen attached to a carbon—carbon double bond. Fluorination of functional group compounds, eg, esters, sulfides, ketones, acids, and aldehydes, produces decomposition products caused by scission of the carbon chains. [Pg.267]

Over the years animal studies have repeatedly shown that perfluorinated inert fluids are nonirritating to the eyes and skin and practically nontoxic by ingestion, inhalation, or intraperitoneal injection (17,22). Thermal degradation can produce toxic decomposition products including perfluoroisobutene which has a reported LC q of 0.5 ppm (6 hr exposure in rats) (31). This decomposition generally requires temperatures above 200°C. [Pg.298]

Because PTFE resins decompose slowly, they may be heated to a high temperature. The toxicity of the pyrolysis products warrants care where exposure of personnel is likely to occur (120). Above 230°C decomposition rates become measurable (0.0001% per hour). Small amounts of toxic perfiuoroisobutylene have been isolated at 400°C and above free fluorine has never been found. Above 690°C the decomposition products bum but do not support combustion if the heat is removed. Combustion products consist primarily of carbon dioxide, carbon tetrafluoride, and small quantities of toxic and corrosive hydrogen fluoride. The PTFE resins are nonflammable and do not propagate flame. [Pg.355]

Prolonged exposure to thermal decomposition products causes so-called polymer fume fever, a temporary influenza-like condition. It may be contracted by smoking tobacco that has been contaminated with the polymer. It occurs several hours after exposure and passes within 36—48 hours the temporary effects are not cumulative. [Pg.355]

In some appHcations the high heat stabiHty of the micropowder can be utilized over a reasonably wide temperature range. A maximum service temperature is normally 260°C, provided the crystalline melting point is between 320 and 335°C. Exposure above 300°C leads to degradation and possible evolution of toxic decomposition products. [Pg.355]

To remove all decomposition products, a "total-capture" exhaust hood is recommended. [Pg.370]

The Du Pont HaskeU Laboratory for Toxicology and Industrial Medicine has conducted a study to determine the acute inhalation toxicity of fumes evolved from Tefzel fluoropolymers when heated at elevated temperatures. Rats were exposed to decomposition products of Tefzel for 4 h at various temperatures. The approximate lethal temperature (ALT) for Tefzel resins was deterrnined to be 335—350°C. AH rats survived exposure to pyrolysis products from Tefzel heated to 300°C for this time period. At the ALT level, death was from pulmonary edema carbon monoxide poisoning was probably a contributing factor. Hydrolyzable fluoride was present in the pyrolysis products, with concentration dependent on temperature. [Pg.370]

The temperature of the melt downstream from the breaker plate may exceed the front barrel temperature, because of the mechanical work transmitted to the resin by the screw it varies with screw speed and flow rate. The melt temperature is measured by a thermocouple inserted into the melt downstream from the breaker plate. A hooded exhaust placed over the extmder die and feed hopper removes decomposition products when the extmdate is heated. [Pg.376]

The autoclave is not the only component of an LDPE plant which may be exposed to a decomposition. Local hot spots in a secondary compressor may initiate a decomposition reaction consequendy it is necessary to protect these units from serious overpressure by pressure relieving devices and to release the products of the decomposition reactions safely. The problem of the aerial decomposition referred to eadier has been largely overcome by rapidly quenching the decomposition products as they enter the vent stack. [Pg.98]

Propellant. The catalytic decomposition of 70% hydrogen peroxide or greater proceeds rapidly and with sufficient heat release that the products are oxygen and steam (see eq. 5). The thmst developed from this reaction can be used to propel torpedoes and other small missiles (see Explosives and propellants). An even greater amount of energy is developed if the hydrogen peroxide or its decomposition products are used as an oxidant with a variety of fuels. [Pg.481]

In appHcations as hard surface cleaners of stainless steel boilers and process equipment, glycoHc acid and formic acid mixtures are particularly advantageous because of effective removal of operational and preoperational deposits, absence of chlorides, low corrosion, freedom from organic Hon precipitations, economy, and volatile decomposition products. Ammoniated glycoHc acid Hi mixture with citric acid shows exceUent dissolution of the oxides and salts and the corrosion rates are low. [Pg.516]

Some unsaturated ketones derived from acetone can undergo base- or acid-catalyzed exothermic thermal decomposition at temperatures under 200°C. Experiments conducted under adiabatic conditions (2) indicate that mesityl oxide decomposes at 96°C in the presence of 5 wt % of aqueous sodium hydroxide (20%), and that phorone undergoes decomposition at 180°C in the presence of 1000 ppm iron. The decomposition products from these reactions are endothermic hydrolysis and cleavage back to acetone, and exothermic aldol reactions to heavy residues. [Pg.487]

The second generation includes latices made with functional monomers like methacrylic acid, 2-hydroxyethyl acrylate [818-61 -17, acrylamide/75 -(9ti-/7, 2-dimethylaminoethylmethacrylate [2867-47-2] and sodiumT -vinyl-benzenesulfonate [98-70-4] that create in polymeric emulsifier. The initiator decomposition products, like the sulfate groups arising from persulfate decomposition, can also act as chemically bound surfactants. These surfactants are difficult to remove from the latex particle. [Pg.25]

Commercial lecithin is insoluble but infinitely dispersible in water. Treatment with water dissolves small amounts of its decomposition products and adsorbed or coacervated substances, eg, carbohydrates and salts, especially in the presence of ethanol. However, a small percentage of water dissolves or disperses in melted lecithin to form an imbibition. Lecithin forms imbibitions or absorbates with other solvents, eg, alcohols, glycols, esters, ketones, ethers, solutions of almost any organic and inorganic substance, and acetone. It is remarkable that the classic precipitant for phosphoHpids, eg, acetone, dissolves in melted lecithin readily to form a thin, uniform imbibition. Imbibition often is used to bring a reactant in intimate contact with lecithin in the preparation of lecithin derivatives. [Pg.99]


See other pages where Products decomposition is mentioned: [Pg.294]    [Pg.306]    [Pg.399]    [Pg.12]    [Pg.224]    [Pg.224]    [Pg.318]    [Pg.22]    [Pg.452]    [Pg.456]    [Pg.485]    [Pg.290]    [Pg.362]    [Pg.508]    [Pg.145]    [Pg.224]    [Pg.502]    [Pg.265]    [Pg.376]    [Pg.512]    [Pg.229]    [Pg.440]    [Pg.316]    [Pg.345]   
See also in sourсe #XX -- [ Pg.25 , Pg.51 , Pg.78 , Pg.83 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.43 , Pg.106 ]

See also in sourсe #XX -- [ Pg.106 , Pg.107 ]

See also in sourсe #XX -- [ Pg.105 ]

See also in sourсe #XX -- [ Pg.220 ]

See also in sourсe #XX -- [ Pg.45 ]




SEARCH



© 2024 chempedia.info