Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From Acids

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

HOaQCHjlfiCOiH, CSH14O4. Important dicarboxylic acid obtained by oxidizing ricino-leic acid (from castor oil) also obtained by oxidation of cyclo-octene or cyclo-octadiene formerly obtained from cork. Used in the formation of alkyd resins and polyamides. Esters are used as plasticizers and heavy duty lubricants and oils. [Pg.375]

The adsorption of stearic acid from n-hexane solution on a sample of steel powder is measured with the following results ... [Pg.420]

Fig. XII-10. Variation of n with load. The data are the friction of copper lubricated with lauric acid (------) and with octacosanoic acid (—). (From Ref. 23.)... Fig. XII-10. Variation of n with load. The data are the friction of copper lubricated with lauric acid (------) and with octacosanoic acid (—). (From Ref. 23.)...
Turn a solution of potassium dichromatefVI) acidified with dilute sulphuric acid from orange to green. [Pg.107]

In the presence of catalyst, usually platinum, ammonia is oxidised by oxygen (and air) to nitrogen oxide. NO. This reaction, used to obtain nitric acid from ammonia (p. 238), can be demonstrated in the laboratory using the apparatus shown in Figure 9.4 the oxygen rate should be slow. [Pg.218]

The 94% acid from the sulphur dioxide drying towers (above) is used here and its strength brought up to 98 %. This is concentrated sulphuric acid. Stronger acid up to 106% may also be made. This concentration is suitable for sulphonating in, for example, the detergent industry. [Pg.300]

Concentrated sulphuric acid displaces more volatile acids from their salts, for example hydrogen chloride from chlorides (see above) and nitric acid from nitrates. The dilute acid is a good conductor of electricity. It behaves as a strong dibasic acid ... [Pg.301]

Dichlorine h ptoxide, CljO, is the most stable of the chlorine oxides. It is a yellow oil at room temperature, b.p. 353 K, which will explode on heating or when subjected to shock. It is the anhydride of chloric(VlI) acid (perchloric acid) from which it is prepared by dehydration using phosphorus(V) oxide, the acid being slowly reformed when water is added. [Pg.336]

Removal of acids from mixtures of acids and neutral compounds. [Pg.56]

This conversion cannot easily be carried out on a semi-micro scale by ordinary chemical means. Liberation of an acid from one of its salts by dil. H SO is feasible when the organic acid is insoluble in water (e.g. an aromatic acid) or... [Pg.56]

Removal of acids from mixtures of acids and neutral substances. Prepare a column of a strong base anion resin and treat it with sodium... [Pg.57]

The isolation of an aliphatic acid from its aqueous solution, particularly in the presence of metallic salts, is a tedious operation (cf. p. 56), although a few such acids, e.g., succinic acid, can be extracted with ether. Since, however, a solution of an acid or one of Its salts is admirably suited for most of the tests in this series, the isolation of the free acid is rarely necessary except as a nieans of distinguishing (as in (i)) between aliphatic and aromatic members. [Pg.349]

All esters are hydrolysed by sodium hydroxide to the alcohol (or sodium phenoxide) and the sodium salt of the acid from which they are derived. [Pg.355]

Physical properties. Majority are liquids except p toluidine and 1- and 2-naphthylamine. All are colourless when pure, but rapidly darken on exposure to air and light. All are very sparingly soluble in water, but dissolve readily in dilute mineral acids (except the naphthyl-amines, which are only moderately soluble in adds). They form colourless crystalline salts e.g., CjHjNH2,HCl) which are soluble in water these aqueous solutions usually have an add reaction owing to hydrolysis, and give the reactions of both the amine and the acid from which they are derived. Addition of alkali to the acid solution liberates the amine. [Pg.373]

Note. Useful information can often be obtained by adding (i) dilute H,SO or (ii) dilute NaOH solution to an aqueous solution of the substance under investigation. A precipitate with (i) usually indicates an aromatic carboxylic acid from a metallic or from an ammonium salt. A precipitate or oil with (ii) usually indicates an aromatic amine from an amine salt. [Pg.404]

Dilute sodium hydroxide solution (and also sodium carbonate solution and sodium bicarbonate solution) can be employed for the removal of an organic acid from its solution in an organic solvent, or for the removal of acidic impurities present in a water-insoluble solid or liquid. The extraction is based upon the fact that the sodium salt of the acid is soluble in water or in dilute alkali, but is insoluble in the organic solvent. Similarly, a sparingly soluble phenol, e.g., p-naphthol, CioH,.OH, may be removed from its solution in an organic solvent by treatment with sodium hydroxide solution. [Pg.151]

Oleum is marketed in all strengths up to ca. 70 per cent. SO3. From 0 to 40 per cent, free SO3, it is a liquid from 40 to 60 per cent, free SO3, it is a solid from 60 to 70 per cent, free SO3, it is liquid above 70 per cent, free SO3, it is a solid. The acid must be kept in ground glass stoppered, thick-walled bottles. If it is required to melt the acid, the stopper is removed, a watch glass placed on the mouth of the bottle, and the bottle placed in a layer of sand in an air bath which is warmed with a small flame. The bottle is fitted with a wash bottle attachment, and any desired quantity of acid is forced out by gentle air pressure from a hand or foot bellows (the mouth must not be used) this procedure is far more satisfactory than that of pouring the liquid acid from the bottle. [Pg.188]

The product is sometimes contaminated with silicic acid from the glass of the condenser this may be removed by filtration. All corlcs should be covered with tin foil to avoid attack by the hydrazine hydrate. [Pg.190]

Plot temperatures as ordinates, and, as abscissae, the percentage of urea from left to right (0-100 per cent.) and of cinnamic acid from right to left (0-100 per cent.). [Pg.230]

Optional or alternative experiments are the recrystaUisation of 3-0 g. of crude benzoic or salicylic acid from water. [Pg.233]

Owing to the comparatively negligible difference in the cost of bromine and the equivalent quantity of constat boiling point hydrobromio acid, there is little to be gained—apart from the instructional value—in preparing the hydrobromio acid from bromine in the preparation of alkyl bromides. [Pg.278]

Anilides or p-toluidides of acids from esters. Esters are converted into the corresponding anilides or p-toluidides by treatment with anilino- or with p-toluidino-magnesium bromide, which are readily obtained from any simple Grignard reagent and aniline or p-toluidine ... [Pg.394]

The reaction is applicable to the preparation of amines from amides of aliphatic aromatic, aryl-aliphatic and heterocyclic acids. A further example is given in Section IV,170 in connexion with the preparation of anthranilic acid from phthal-imide. It may be mentioned that for aliphatic monoamides containing more than eight carbon atoms aqueous alkaline hypohalite gives poor yields of the amines. Good results are obtained by treatment of the amide (C > 8) in methanol with sodium methoxide and bromine, followed by hydrolysis of the resulting N-alkyl methyl carbamate ... [Pg.413]

The residue (220 g.) crystallises on coohng and consists of almost pure monobromoacetic acid (2). If it is required perfectly pure, distil the crude acid from a Claisen flask and collect the fraction of b.p. 202-204°. When distilled under diminished pressure, the acid boils at 117-118°/ 5 mm. Pure monobromoacetic acid has m.p. 50°,... [Pg.429]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Pimelic acid. Heat a mixture of 18 g. of pentamethylene dicyanide and 250 g. of 50 per cent, sulphuric acid by weight in a 750 ml. round-bottomed flask under reflux for 9 hours. INIost of the pimehc acid separates from the cold reaction mixture. Filter oflF the crystaUine acid upon a sintered glass funnel. Saturate the filtrate with ammonium sulphate and extract it with three 50 ml. portions of ether. Dissolve the residue on the filter (which is shghtly discoloured, but is fairly pure pimehc acid) in the combined ethereal extracts, dry with anhydrous sodium or magnesium sulphate, and remove the ether by distiUation. Recrystallise the residual sohd acid from benzene containing 5 per cent, of ether. The yield of pure pimehc acid, m.p, 105-106°, is 22 g. [Pg.493]

Di lve 20 g. of the cyano ester in 100 ml. of rectified spirit and add a solution of 19 2 g. of pure potassium cyanide in 40 ml. of water. Allow to stand for 48 hours, then distil oflF the alcohol on a water bath. Add a large excess of concentrated hydrochloric acid and heat under reflux for 3 hours. Dilute with water, saturate the solution with ammonium sulphate, and extract with four 75 ml. portions of ether. Dry the combined ethereal extracts with anhydrous sodium or magnesium sulphate, and distil off the ether. RecrystaUise the residual acid from excess concentrated hydrochloric acid, and dry in the air. The yield of pure ew-dimethyl-succinic acid, m.p. 141-142°, is 12 g. [Pg.495]


See other pages where From Acids is mentioned: [Pg.12]    [Pg.193]    [Pg.402]    [Pg.414]    [Pg.351]    [Pg.41]    [Pg.532]    [Pg.158]    [Pg.313]    [Pg.349]    [Pg.53]    [Pg.233]    [Pg.351]    [Pg.435]    [Pg.486]    [Pg.491]    [Pg.492]    [Pg.493]    [Pg.494]   
See also in sourсe #XX -- [ Pg.70 , Pg.71 ]




SEARCH



© 2024 chempedia.info