Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous salt solutions

They show good to excellent resistance to highly aromatic solvents, polar solvents, water and salt solutions, aqueous acids, dilute alkaline solutions, oxidative environments, amines, and methyl alcohol. Care must be taken in choice of proper gum and compound. Hexafluoropropylene-containing polymers are not recommended for use in contact with ammonia, strong caustic (50% sodium hydroxide above 70°C), and certain polar solvents such as methyl ethyl ketone and low molecular weight esters. However, perfluoroelastomers can withstand these fluids. Propylene-containing fluorocarbon polymers can tolerate strong caustic. [Pg.509]

Stainless steels 700 (1,300) Aqueous salt solutions, aqueous nitric acid, aqueous basic solutions, food intermediates, alcohols, ethers, ffeons, hydrogen, hydrogen sulfide, molten salts, molten metals... [Pg.785]

Good to excellent resistance, gum and compound must be chosen with care, eg, highly aromatic solvents, polar solvents, water and salt solutions. Aqueous acids, dilute alkaline solutions, oxidative environments, and amines. [Pg.3310]

Polyetherimide chemical resistance is very good. Polyetherimide is resistant to hydrocarbons, mineral oils, gasoline (to 70 °C), fuels, anti-freeze liquids, cleaning agents, mineral acids, salt solutions, aqueous bases (pH < 9), and alcohols. [Pg.785]

The choice of the precursor will depend on the reaction medium. High vacuum deposition methods use volatile organometallic precursors or ion, atom or molecule beams. Normal pressure vapor methods use similar volatile precursors, or sprayed metal salt solutions. Aqueous solution methods use water soluble salts, and organic solution methods use organometallic soluble compounds. Typical chemical reactions to generate the growth units are ... [Pg.449]

Albumins. Soluble proteins both in water and in dilute aqueous salt solutions found in all living tissue. Typical albumins are ovalbumin from eggs and lactalbumin from milk. [Pg.331]

Glycoproteins or mucoproieins. Compounds of proteins with carbohydrates. All glycoproteins contain a hexosamine and usually sulphate, ethanoate and glucuronic acid. The carbohydrate-protein linkages are, in some cases covalent and in others of the salt type. Aqueous solutions of glycoproteins are extremely viscous. [Pg.332]

Table A2.4.5. Experimental and theoretical values of -i- B2 for various salts in aqueous solution at 291 K. Table A2.4.5. Experimental and theoretical values of -i- B2 for various salts in aqueous solution at 291 K.
Because of ammine formation, when ammonia solution is added slowly to a metal ion in solution, the hydroxide may first be precipitated and then redissolve when excess ammonia solution is added this is due to the formation of a complex ammine ion, for example with copper(II) and nickel(II) salts in aqueous solution. [Pg.218]

When a diazonium salt in aqueous solution is gently warmed, it reacts with the water, liberating nitrogen and forming the corresponding phenol ... [Pg.195]

The use of methyl-orange as an indicator is based on the fact that the sodium salt in aqueous solution furnishes a yellow anion, which when treated with acids (except weak acids such as H2CO3 and H SOj) apparently gives rise to a red... [Pg.215]

Arylarsonic acids are most readily prepared by the Bart Reaction, in which a diazonium salt in aqueous solution is run into a solution of sodium arsenite in an excess of sodium carbonate. The addition of copper sulphate to the +. ... [Pg.312]

B) Benzylthiouronium salts. Cold aqueous solutions of ammonium... [Pg.360]

C) Phenacyl and p-Bromophenacyl esters. Ammonium salts in aqueous-ethanolic solution do not however usually condense satisfactorily with phenacyl and />-bromophenacyl bromide. The aqueous solution of the ammonium salt should therefore be boiled with a slight excess of sodium hydroxide to remove ammonia, and the solution then cooled, treated with hydrochloric acid until just alkaline to phenol-phthalein, and then evaporated to dryness. The sodium salt is then treated as described (p. 349) to give the ester. Filter the ester, and wash with water to remove senium halide before recrystallisation. [Pg.360]

In the isolation of organic compounds from aqueous solutions, use is frequently made of the fact that the solubility of many organic substances in water is considerably decreased by the presence of dissolved inorganic salts (sodium chloride, calcium chloride, ammonium sulphate, etc.). This is the so-called salting-out effect. A further advantage is that the solubility of partially miscible organic solvents, such as ether, is considerably less in the salt solution, thus reducing the loss of solvent in extractions. [Pg.151]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

Photolysis of 4-aminothiazolium salts in aqueous solution may cause ring opening, probably via a thiirane. to give a-cyano-jS-aminovinyl-disulfide or a-acylacetamidine derivatives (22). [Pg.8]

Chlorine is soluble in water and in salt solutions, the solubihty decreasing with salt strength and temperature (see Fig. 34). It is partially hydrolyzed in aqueous solution as... [Pg.507]

Biopolymer Extraction. Research interests involving new techniques for separation of biochemicals from fermentation broth and cell culture media have increased as biotechnology has grown. Most separation methods are limited to small-scale appHcations but recendy solvent extraction has been studied as a potential technique for continuous and large-scale production and the use of two-phase aqueous systems has received increasing attention (259). A range of enzymes have favorable partition properties in a system based on a PGE—dextran—salt solution (97) ... [Pg.80]

Solution Polymerization. Solution polymerization is widely used ia the acryhc fiber iadustry. The reactioa is carried out ia a homogeaeous medium by usiag a solveat for the polymer. Suitable solveats can be highly polar organic compounds or inorganic aqueous salt solutions. [Pg.277]

Dimethylformamide [68-12-2] (DME) and dimethyl sulfoxide [67-68-5] (DMSO) are the most commonly used commercial organic solvents, although polymerizations ia y-butyrolactoae, ethyleae carboaate, and dimethyl acetamide [127-19-5] (DMAC) are reported ia the hterature. Examples of suitable inorganic salts are aqueous solutioas of ziac chloride and aqueous sodium thiocyanate solutions. The homogeneous solution polymerization of acrylonitrile foUows the conventional kinetic scheme developed for vinyl monomers (12) (see Polymers). [Pg.277]

An aqueous PVA solution containing a small amount of boric acid may be extmded into an aqueous alkaline salt solution to form a gel-like fiber (15,16). In this process, sodium hydroxide penetrates rapidly into the aqueous PVA solution extmded through orifices to make it alkaline, whereby boric acid cross-links PVA molecules with each other. The resulting fiber is provided with sufficient strength to withstand transportation to the next process step and its cross section does not show a distinct skin/core stmcture. [Pg.339]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

Solutions of alkah metal and ammonium iodides in Hquid iodine are good conductors of electricity, comparable to fused salts and aqueous solutions of strong acids. The Hquid is therefore a polar solvent of considerable ionising power, whereas its own electrical conductivity suggests that it is appreciably ionized, probably into I" and I (triodide). Iodine resembles water in this respect. The metal iodides and polyiodides are bases, whereas the iodine haHdes are acids. [Pg.360]

Several aqueous systems should be considered in a similar manner. For example, in the selective removal of divalent cations from a saturated salt solution, the hydrated resin gives up a portion of its normal water content as it contacts the salt stream. In so doing, the particles shrink, and the inner pathways for ion migration become smaller. [Pg.379]

Eye and Skin Contact. Some nickel salts and aqueous solutions of these salts, eg, the sulfate and chloride, may cause a primary irritant reaction of the eye and skin. The most common effect of dermal exposure to nickel is allergic contact dermatitis. Nickel dermatitis may occur in sensitized individuals following close and prolonged contact with nickel-containing solutions or metallic objects such as jewelry, particularly pierced earrings. It is estimated that 8—15% of the female human population and 0.2—2% of the male human population is nickel-sensitized (125). [Pg.13]

The purified acid is recovered from the loaded organic stream by contacting with water in another countercurrent extraction step. In place of water, an aqueous alkafl can be used to recover a purified phosphate salt solution. A small portion of the purified acid is typically used in a backwashing operation to contact the loaded organic phase and to improve the purity of the extract phase prior to recovery of the purified acid. Depending on the miscibility of the solvent with the acid, the purified acid and the raffinate may be stripped of residual solvent which is recycled to the extraction loop. The purified acid can be treated for removal of residual organic impurities, stripped of fluoride to low (10 ppm) levels, and concentrated to the desired P2 s Many variations of this basic scheme have been developed to improve the extraction of phosphate and rejection of impurities to the raffinate stream, and numerous patents have been granted on solvent extraction processes. [Pg.328]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

Hydrated amorphous silica dissolves more rapidly than does the anhydrous amorphous silica. The solubility in neutral dilute aqueous salt solutions is only slighdy less than in pure water. The presence of dissolved salts increases the rate of dissolution in neutral solution. Trace amounts of impurities, especially aluminum or iron (24,25), cause a decrease in solubility. Acid cleaning of impure silica to remove metal ions increases its solubility. The dissolution of amorphous silica is significantly accelerated by hydroxyl ion at high pH values and by hydrofluoric acid at low pH values (1). Dissolution follows first-order kinetic behavior and is dependent on the equilibria shown in equations 2 and 3. Below a pH value of 9, the solubility of amorphous silica is independent of pH. Above pH 9, the solubility of amorphous silica increases because of increased ionization of monosilicic acid. [Pg.488]

Transportation and Disposal. Only highly alkaline forms of soluble sihcates are regulated by the U.S. Department of Transportation (DOT) as hazardous materials for transportation. When discarded, these ate classified as hazardous waste under the Resource Conservation and Recovery Act (RCRA). Typical members of this class are sodium sihcate solutions having sihca-to-alkah ratios of less than 1.6 and sodium sihcate powders with ratios of less than 1.0. In the recommended treatment and disposal method, the soluble sihcates are neutralized with aqueous acid (6 Af or equivalent), and the resulting sihca gel is disposed of according to local, state, and federal regulations. The neutral hquid, a salt solution, can be flushed iato sewer systems (86). [Pg.10]

Neutral aqueous salt solutions react slowly with tin when oxygen is present but oxidizing salt solutions, such as potassium peroxysulfate, ferric chloride and sulfate, and aluminum and stannic chlorides dissolve tin. Nonaqueous organic solvents, lubricating oils, and gasoline have Httle effect. [Pg.57]


See other pages where Aqueous salt solutions is mentioned: [Pg.671]    [Pg.462]    [Pg.429]    [Pg.671]    [Pg.462]    [Pg.429]    [Pg.30]    [Pg.28]    [Pg.23]    [Pg.340]    [Pg.262]    [Pg.524]    [Pg.543]    [Pg.440]    [Pg.233]    [Pg.270]    [Pg.340]    [Pg.467]    [Pg.153]    [Pg.154]    [Pg.1]    [Pg.102]   


SEARCH



Activity coefficients in aqueous salt solutions

Aluminium to thallium salts of oxoacids, aqueous solution chemistry and complexes

Aqueous Solutions of Simple Salts

Aqueous solutions of salts

Conductivity, electrical aqueous solutions of acids, bases, salts

Dense aqueous solutions of inorganic salts

Dissolution of ionic salts in aqueous solution

Electrolysis of aqueous salt solutions

Electrolytic cells aqueous salt solutions, electrolysis

Extraction aqueous salt solutions

Heat capacity aqueous salt solutions

In aqueous mixed-salt solution

Inorganic salts in aqueous solution

Many Salts Have Acid-Base Properties in Aqueous Solution

Pressures (mm Hg) of Saturated Aqueous Solutions in Equilibrium with Solid Salts

Reaction of aromatic diazonium salts with metal and metalloid halides or oxides in aqueous solution

Reactions in Aqueous Solutions I Acids, Bases, and Salts

Salt solutions, aqueous polymer-bearing

Salt solutions, aqueous surfaces

Separation of Aqueous Ionized Molecule-Salt Solutions

Single-salt solutions, applicability aqueous

The Electrolysis of an Aqueous Salt Solution

Vapor pressure aqueous salt solutions

© 2024 chempedia.info