Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Numerical Patent

Furfural is a resin former under the influence of strong acid. It will self-resinify as well as form copolymer resins with furfuryl alcohol, phenoHc compounds, or convertible resins of these. Conditions of polymerization, whether aqueous or anhydrous, inert or oxygen atmosphere, all affect the composition of the polymer. Numerous patents have issued relating to polymerization and to appHcations. Although the resins exhibit a degree of britdeness, they have many outstanding properties a number of appHcations are discussed under "Uses."... [Pg.77]

Numerous patents have been issued disclosing catalysts and process schemes for manufacture of acrylonitrile from propane. These include the direct heterogeneously cataly2ed ammoxidation of propane to acrylonitrile using mixed metal oxide catalysts (61—64). [Pg.184]

Cyclohexane, produced from the partial hydrogenation of benzene [71-43-2] also can be used as the feedstock for A manufacture. Such a process involves selective hydrogenation of benzene to cyclohexene, separation of the cyclohexene from unreacted benzene and cyclohexane (produced from over-hydrogenation of the benzene), and hydration of the cyclohexane to A. Asahi has obtained numerous patents on such a process and is in the process of commercialization (85,86). Indicated reaction conditions for the partial hydrogenation are 100—200°C and 1—10 kPa (0.1—1.5 psi) with a Ru or zinc-promoted Ru catalyst (87—90). The hydration reaction uses zeotites as catalyst in a two-phase system. Cyclohexene diffuses into an aqueous phase containing the zeotites and there is hydrated to A. The A then is extracted back into the organic phase. Reaction temperature is 90—150°C and reactor residence time is 30 min (91—94). [Pg.242]

Polyester Fibers Containing Phosphorus. Numerous patents describe poly(ethylene terephthalate) (PET) flame-retarded with phosphoms-containing diftmctional reactants. At least two of these appear to be commercial. [Pg.480]

The single-step -duoroaruline [31-40-4] process based on duorodeoxygenation of nitrobenzene (via in situ generation of /V-phenylhydroxyl amine) in anhydrous hydrogen duoride (94—96) has not been commercialized primarily due to concurrent formation of aniline, as well as limited catalyst life. The potential attractiveness of this approach is evidenced by numerous patents (97—101). Concurrent interest has been shown in the two-step process based on /V-phenylhydroxylamine (HF-Bamberger reaction) (102—104). [Pg.319]

Preparation. Thermal elimination of HCl from l-chloro-l,l-difluoroethane (HCFC-142b) [75-68-3] is the principal industrial route to VDF covered by numerous patents (8—19). Dehydrohalogenation of l-bromo-l,l-difluoroethane (20), or 1,1,1-trifluoroethane (HFC-143a) (21—25), or dehalogenation of l,2-dichloro-l,l-difluoroethane (26—28) are investigated alternative routes (see Fluorine compounds, organic-fluorinated aliphatic compounds). [Pg.385]

Photochromic Organic Dyes. Intensive investigations into this category of substances have led to numerous patent appHcations. Copper—phthalocyanine pigments, organic dyes based on cyanine (Ricoh, Pioneer), naphthochinone (Nippon Denki), and ben2othiopyrane (Sony) (123) have been described. They did not lead, however, to any commercial use. Surveys on the possibiUties of optical data storage with photochromic dyes can be found (124,125). [Pg.151]

UOP Inc. is the key source of technology in this area, having numerous patents and over 70 units operating worldwide (12). The dehydrogenation catalyst is usually a noble metal such as platinum. Eor a typical conversion, the operating temperature is 300—500°C at 100 kPa (1 atm) (13) hydrogen-to-paraffin feed mole ratio is 5 1. [Pg.441]

The purified acid is recovered from the loaded organic stream by contacting with water in another countercurrent extraction step. In place of water, an aqueous alkafl can be used to recover a purified phosphate salt solution. A small portion of the purified acid is typically used in a backwashing operation to contact the loaded organic phase and to improve the purity of the extract phase prior to recovery of the purified acid. Depending on the miscibility of the solvent with the acid, the purified acid and the raffinate may be stripped of residual solvent which is recycled to the extraction loop. The purified acid can be treated for removal of residual organic impurities, stripped of fluoride to low (10 ppm) levels, and concentrated to the desired P2 s Many variations of this basic scheme have been developed to improve the extraction of phosphate and rejection of impurities to the raffinate stream, and numerous patents have been granted on solvent extraction processes. [Pg.328]

Numerous patents exist for the production of nitdlotriacetic acid [139-13-9]2in.d its salts from triethanolamine (14—16). [Pg.7]

Mining. Numerous patents have advocated the use of alkanolamines in mining appHcations. Triethanolarnine has been used as a depressent in the flotation of copper (164), in the electrotwinning of gold (165), and as an aid in the froth flotation of nickel ores. Phosphate ore flotation has been improved through the use of a fatty acid condensate with ethanolamine (166). Beneficiation of tin ore has been accompHshed using fatty acid alkanolamides (167). [Pg.11]

The principal commercial uses of sulfur monochloride are in the manufacture of lubricant additives and vulcanising agents for mbber (147,154,155) (see Lubrication AND lubricants Rubber chemicals). The preparation of additives for wear and load-bearing improvement of lubricating oils is generally carried out in two steps and the technology is described in numerous patents (155) (see Sulfurization and sulfchlorination). [Pg.139]

Numerous patents and pubHcations of the Northern Regional Research Center, Peoria, lU. [Pg.369]

Arsine is used for the preparation of gallium arsenide [1303-00-0] GaAs, (17), and there are numerous patents covering this subject (see Arsenic and ARSENIC alloys). The conversion of a monomeric arsinogaHane to gallium arsenide has also been described (18). GaUium arsenide has important appHcations in the field of optoelectronic and microwave devices (see Lasers Microwave technology Photodetectors). [Pg.333]

Hydraulic Fluids and Lubricants. The use of borate esters in hydrauHc fluids (qv) and lubricants (see Lubrication and lubricants) has been described in numerous patents (40,43,44). A variety of borate esters have been described that can be used as multiflinctional lubricant additives having antiwear and antifriction properties (45). [Pg.216]

About 51% of the carbon dioxide consumed in the United States is used in the food industry. It is generally purchased in Hquid form but may be used in any form. It is generally used for food freezing or chilling. Numerous patents on appHcations and equipment for these appHcations have been received. [Pg.24]

Uses. /-Butyl hypochlorite has been found useful in upgrading vegetable oils (273) and in the preparation of a-substituted acryflc acid esters (274) and esters of isoprene halohydrins (275). Numerous patents describe its use in cross-linking of polymers (qv) (276), in surface treatment of mbber (qv) (277), and in odor control of polymer latexes (278). It is used in the preparation of propylene oxide (qv) in high yield with Httle or no by-products (269,279). Fluoroalkyl hypochlorites are useful as insecticides, initiators for polymerizations, and bleaching and chlorinating agents (280). [Pg.475]

The seminal work on these materials began at American Cyanamid Co. in the 1960s (4,23), though these workers did not author the ion-insertion/extraction model that has become widely accepted (5). Numerous patents were granted to American Cyanamid Co. as a result of its display-oriented work. Much of what others have written in the open Hterature either confirms or adds to what these teach. Important papers (16) about... [Pg.156]

Catalysts. Historically, cmde clays have been used to some extent in petroleum refining (20). More recently, however, processed clays are increasingly used as raw materials and converted to more reactive catalyst products. Various proprietary processes are used and numerous patents have been issued. [Pg.210]

Codeine, C18H21O3N. This alkaloid was isolated from opium by Robiquet in 1833. It occurs in opium to the extent of 0-1 to 3 per cent., and is isolated therefrom as the hydrochloride along with morphine hydrochloride in the first stage of Gregory s process. It is a methyl ether of morphine and is usually made from the latter by methylation, for which there are numerous patents. An extensive series of ethers of morphine and its isomerides, including ethers of the alcoholic hydroxyl group (Aeterocodeines) has been prepared by Faris and SmaU. ... [Pg.216]

Isolation of Ergot Alkaloids. In the papers already quoted (refs. 6 to 19) the processes used for the isolation of the total alkaloids and the separation of the component bases are given to those may be added references to methods by other authors. There are also numerous patented processes, some of which are quoted in the following special sections. [Pg.520]

Although relatively new, PVC/TPU polymeric blends have already found substantial applications in various fields. This is evident by the numerous patents applied for in this area. [Pg.144]

Ipatieff never received the honor he coveted the most, the Nobel Prize. However, he continued to publish voluminously and, ever the practical scientist, he obtained numerous patents. He continued to receive honors in the United States and internationally. He became a member of the National Academy of Sciences and received the prestigious Gibbs medal for his many achievements. Ipatieff lived long enough to see the petroleum industry transformed with process technologies that he created and that were rooted in his early scientific research. The first platforming plant, the cuhniiiation of his life s work in catalytic research, came on line just shortly before his death in 1952. [Pg.680]

Of some interest is also co-crosslinking of various synthetic polymers, their blends with natural ones as well as compositions with inert or active fillers numerous patents are devoted to these materials (for example, Refs. [87, 88]). Low doses of crosslinking allow to introduce various physiologically active additives into SAH without any danger of radiation damage. This possibility is particularly attractive for the technology of SAH. [Pg.109]

With a history of more than 25 years, the free radical-induced grafting of MAH onto polyolefin substrates is one of the most studied polyolefin modification processes.29 "29, 302 The process has been carried out in the melt phase, in various forms of extruders and batch mixers, and there are numerous patents covering various aspects of the process. It has also been carried out successfully in solution and in the solid state. The materials have a range of applications including their use as precursors to graft copolymers, either directly, or during the preparation of blends.297... [Pg.392]

US production of NS began in 1888 under the name of Volney Powder. Improved NS stability was achieved by Hough, who operated two plants in New Jersey for the production of NS. Later (1905 to 1907) Dupont and Eastern Dynamite Corp experimented with NS expls. At about that time Trojan Powder Co became interested in NS. It soon became and stili is the largest manufacturer of NS. Numerous patents (from 1918 to 1945) have been issued to W.O. Snelling (of Trojan Powder Co) for the prepn, stabilization and use of NS (Ref 21a)... [Pg.341]

Numerous patents have been issued on PETN-plastic compns usually in the form of sheet expl. Some of these are briefly summarized below... [Pg.570]

B. Phosphonomycin.—Since the publication of the synthesis of (48), which was described in last year s Report, numerous patents have been filed of syntheses of this antibiotic. The isomerization of the trans-... [Pg.138]


See other pages where Numerical Patent is mentioned: [Pg.486]    [Pg.331]    [Pg.515]    [Pg.510]    [Pg.469]    [Pg.500]    [Pg.11]    [Pg.119]    [Pg.126]    [Pg.489]    [Pg.309]    [Pg.466]    [Pg.134]    [Pg.455]    [Pg.521]    [Pg.793]    [Pg.124]    [Pg.217]    [Pg.83]    [Pg.115]    [Pg.94]    [Pg.292]    [Pg.446]   
See also in sourсe #XX -- [ Pg.25 , Pg.50 , Pg.78 , Pg.82 ]




SEARCH



© 2024 chempedia.info