Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions metal salt

In contrast to using metal complex developers in solution, metal salt developer precursors such as CuNCS, C0CO3, CoC204 or MnC204 can be incorporated directly into silver halide emulsion layers. After exposure, the emulsion is developed by immersion in an ethylenediamine or other amine solution, generating a complex ion developer in situ. 2... [Pg.99]

Dissolves in alkaline solutions to give purple-red solutions which are precipitated as lakes by heavy metal salts. Occurs naturally as a glucoside in madder but produced synthetically by fusing anthraquinone-2-sulphonic acid with NaOH and some KCIO3. Applied to the mordanted fibre. Al(OH)3 gives a bright red lake, Cr(OH)3 a red lake, FefOH) ... [Pg.20]

Consequently they cannot be prepared by the addition of sulphide ions to a solution of the metal salt, the hydrated metal ions being so strongly acidic that the following reaction occurs, for example... [Pg.288]

These are practically insoluble in water, are not hydrolysed and so may be prepared by addition of a sufficient concentration of sulphide ion to exceed the solubility product of the particular sulphide. Some sulphides, for example those of lead(II), copper(II) and silver(I), have low solubility products and are precipitated by the small concentration of sulphide ions produced by passing hydrogen sulphide through an acid solution of the metal salts others for example those of zincfll), iron(II), nickel(II) and cobalt(II) are only precipitated when sulphide ions are available in reasonable concentrations, as they are when hydrogen sulphide is passed into an alkaline solution. [Pg.288]

The isolation of an aliphatic acid from its aqueous solution, particularly in the presence of metallic salts, is a tedious operation (cf. p. 56), although a few such acids, e.g., succinic acid, can be extracted with ether. Since, however, a solution of an acid or one of Its salts is admirably suited for most of the tests in this series, the isolation of the free acid is rarely necessary except as a nieans of distinguishing (as in (i)) between aliphatic and aromatic members. [Pg.349]

Primary aromatic amides are crystaUine sohds with definite melting points. Upon boiling with 10-20 per cent, sodium or potassium hydroxide solution, they are hydrolysed with the evolution of ammonia (vapour turns red htmus paper blue and mercurous nitrate paper black) and the formation of the alkah metal salt of the acid ... [Pg.798]

They are prepared by the addition of an alcoholic solution of thiazole to the metal salt in the same solvent. [Pg.120]

All the early literature concerning thiazoles mentions numerous metallic complex-salts formed by addition to the thiazole of the aqueous solution of the metal salt and that could be used for identification purposes. The most usual complexes so obtained are platinum double salts, for example, (4-methylthiazole HC1)2 PtCU (m.p. deep 204°C) (25), or mercuric chloride derivatives, for example, 2,4-dimethyl-thiazole 2 HgCl (m.p. deep 176-177°C) (458). [Pg.126]

BackTitrations. In the performance of aback titration, a known, but excess quantity of EDTA or other chelon is added, the pH is now properly adjusted, and the excess of the chelon is titrated with a suitable standard metal salt solution. Back titration procedures are especially useful when the metal ion to be determined cannot be kept in solution under the titration conditions or where the reaction of the metal ion with the chelon occurs too slowly to permit a direct titration, as in the titration of chromium(III) with EDTA. Back titration procedures sometimes permit a metal ion to be determined by the use of a metal indicator that is blocked by that ion in a direct titration. Eor example, nickel, cobalt, or aluminum form such stable complexes with Eriochrome Black T that the direct titration would fail. However, if an excess of EDTA is added before the indicator, no blocking occurs in the back titration with a magnesium or zinc salt solution. These metal ion titrants are chosen because they form EDTA complexes of relatively low stability, thereby avoiding the possible titration of EDTA bound by the sample metal ion. [Pg.1167]

In a back titration, a slight excess of the metal salt solution must sometimes be added to yield the color of the metal-indicator complex. Where metal ions are easily hydrolyzed, the complexing agent is best added at a suitable, low pH and only when the metal is fully complexed is the pH adjusted upward to the value required for the back titration. In back titrations, solutions of the following metal ions are commonly employed Cu(II), Mg, Mn(II), Pb(II), Th(IV), and Zn. These solutions are usually prepared in the approximate strength desired from their nitrate salts (or the solution of the metal or its oxide or carbonate in nitric acid), and a minimum amount of acid is added to repress hydrolysis of the metal ion. The solutions are then standardized against an EDTA solution (or other chelon solution) of known strength. [Pg.1167]

Charge-Transfer Salts. Most charge-transfer salts can be prepared by direct mixing of donors and acceptors in solution. Semiconducting salts of TCNQ have been prepared with a variety of both organic and inorganic counterions. Simple salts of the type TCNQ can be obtained by direct reaction of a metal such as copper or silver with TCNQ in solution. Solutions of metal iodides can be used in place of the metals, and precipitation of the TCNQ salt occur direcdy (24). [Pg.242]

Multiple-Bubble Sonoluminescence. The sonoluminescence of aqueous solutions has been often examined over the past thirty years. The spectmm of MBSL in water consists of a peak at 310 nm and a broad continuum throughout the visible region. An intensive study of aqueous MBSL was conducted by VerraH and Sehgal (35). The emission at 310 nm is from excited-state OH, but the continuum is difficult to interpret. MBSL from aqueous and alcohol solutions of many metal salts have been reported and are characterized by emission from metal atom excited states (36). [Pg.259]

Electroless plating on metal substrates can be improved by addition of pentaerythritol, either to a photosensitive composition of a noble metal salt (99), or with glycerine to nickel plating solutions (100). Both resolution and covering power of the electrolyte are improved. [Pg.466]

The first reported synthesis of acrylonitrile [107-13-1] (qv) and polyacrylonitrile [25014-41-9] (PAN) was in 1894. The polymer received Htde attention for a number of years, until shortly before World War II, because there were no known solvents and the polymer decomposes before reaching its melting point. The first breakthrough in developing solvents for PAN occurred at I. G. Farbenindustrie where fibers made from the polymer were dissolved in aqueous solutions of quaternary ammonium compounds, such as ben2ylpyridinium chloride, or of metal salts, such as lithium bromide, sodium thiocyanate, and aluminum perchlorate. Early interest in acrylonitrile polymers (qv), however, was based primarily on its use in synthetic mbber (see Elastomers, synthetic). [Pg.274]

The metallic salts of trifluoromethanesulfonic acid can be prepared by reaction of the acid with the corresponding hydroxide or carbonate or by reaction of sulfonyl fluoride with the corresponding hydroxide. The salts are hydroscopic but can be dehydrated at 100°C under vacuum. The sodium salt has a melting point of 248°C and decomposes at 425°C. The lithium salt of trifluoromethanesulfonic acid [33454-82-9] CF SO Li, commonly called lithium triflate, is used as a battery electrolyte in primary lithium batteries because solutions of it exhibit high electrical conductivity, and because of the compound s low toxicity and excellent chemical stabiUty. It melts at 423°C and decomposes at 430°C. It is quite soluble in polar organic solvents and water. Table 2 shows the electrical conductivities of lithium triflate in comparison with other lithium electrolytes which are much more toxic (24). [Pg.315]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Alkali or alkaline-earth salts of both complexes are soluble in water (except for Ba2[Fe(CN)g]) but are insoluble in alcohol. The salts of hexakiscyanoferrate(4—) are yellow and those of hexakiscyanoferrate(3—) are mby red. A large variety of complexes arise when one or more cations of the alkah or alkaline-earth salts is replaced by a complex cation, a representative metal, or a transition metal. Many salts have commercial appHcations, although the majority of industrial production of iron cyanide complexes is of iron blues such as Pmssian Blue, used as pigments (see Pigments, inorganic). Many transition-metal salts of [Fe(CN)g] have characteristic colors. Addition of [Fe(CN)g] to an unknown metal salt solution has been used as a quaUtative test for those transition metals. [Pg.434]

Peroxohydrates are usually made by simple crystallization from solutions of salts or other compounds in aqueous hydrogen peroxide. They are fairly stable under ambient conditions, but traces of transition metals catalyze the Hberation of oxygen from the hydrogen peroxide. Early work on peroxohydrates has been reviewed (92). [Pg.96]

Alkyl hydroperoxides form stable alkaU metal salts with caustic however, when equimolar amounts of the hydroperoxide and its sodium salt are present in aqueous solution, rapid decomposition to tert-AcohoX and oxygen occurs (28). [Pg.103]


See other pages where Solutions metal salt is mentioned: [Pg.130]    [Pg.25]    [Pg.278]    [Pg.130]    [Pg.25]    [Pg.278]    [Pg.53]    [Pg.120]    [Pg.163]    [Pg.365]    [Pg.408]    [Pg.500]    [Pg.389]    [Pg.363]    [Pg.1092]    [Pg.102]    [Pg.164]    [Pg.18]    [Pg.201]    [Pg.310]    [Pg.164]    [Pg.255]    [Pg.368]    [Pg.487]    [Pg.208]    [Pg.302]    [Pg.303]    [Pg.472]    [Pg.222]    [Pg.504]    [Pg.515]    [Pg.10]    [Pg.348]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Gels Impregnated with Metal Salt Solutions

Metal solutions

Metal-molten salt solutions

Metals in Salt Solutions

Reaction of aromatic diazonium salts with metal and metalloid halides or oxides in aqueous solution

Solutions metallic

© 2024 chempedia.info