Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salts sodium

Anlhraquinone-2-su phonic acid. The sodium salt, commonly called silver salt , is used for the preparation of alizarin and 2-aminoanthraquinone and to prepare Fieser s solution. Aminoanthraquinone derivatives are the basis of many dyestuffs. [Pg.37]

White crystals, m.p. 191°C. A barbituric acid derivative. The sodium salt is administered orally as a sedative. [Pg.51]

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

Mammalian bile contains sodium salts of conjugated bile acids, e.g. glycocholic acid and taurocholic acid, in which cholic acid is combined (amide linkage) with glycine and taurine respectively. [Pg.96]

The sodium salts of sulphuric acid esters of dextran are used as anticoagulants for the same purposes as heparin. [Pg.130]

Hyponiirous acid, H2N2O2. A solution of the sodium salt is formed from NaN02 and Na... [Pg.278]

Nitrous acid, HNO2. See separate entry. Hyponitric acid, H2N2O3, trioxo di-nitrate(Il). Sodium salt from HjNOH in MeOH with CiHiNOi many complexes are known the free acid is unstable. [Pg.279]

It can act either as a nitrosophenol or as a quinone monoxime. Coloured derivatives, e.g. the sodium salt, are derived from the quinone form. Direct methylation gives a coloured compound which has been shown to be quino-nemethoxime OlCeH4tNOCH3 p-nitrosoani-sole CH30 C6H4 N0 has been obtained by another route and is colourless. [Pg.280]

Crystallizes from water in large colourless prisms containing 2H2O. It is poisonous, causing paralysis of the nervous system m.p. 101 C (hydrate), 189°C (anhydrous), sublimes 157°C. It occurs as the free acid in beet leaves, and as potassium hydrogen oxalate in wood sorrel and rhubarb. Commercially, oxalic acid is made from sodium methanoate. This is obtained from anhydrous NaOH with CO at 150-200°C and 7-10 atm. At lower pressure sodium oxalate formed from the sodium salt the acid is readily liberated by sulphuric acid. Oxalic acid is also obtained as a by-product in the manufacture of citric acid and by the oxidation of carbohydrates with nitric acid in presence of V2O5. [Pg.291]

Perkin reaction A condensation between aromatic aldehydes and the sodium salts of fatty acids or their aromatic derivatives. The reaction between benzaldehyde and sodium ethanoate in the presence of ethanoic anhydride leads to sodium cinnamate... [Pg.300]

C12H12N2O3. White crystals, m.p. 174°C. Prepared by condensing the ethyl ester of phenylethylmalonic acid with urea. It is a more active hypnotic than barbitone. It and its sodium salt - soluble phenobarbitone - are used as sedatives and in treating epilepsy. [Pg.303]

Cj jH,2N202. Used as its sodium salt, which is a white hygroscopic powder. Unstable, readily absorbing carbon dioxide and liberating phenytoin. Made by treating a-bromodi-phenylacetylurea with alcoholic ammonia. It has a mild hypnotic and strong anticonvulsant action, and is used in the treatment of grand-mal and focal epilepsy. [Pg.306]

C (decomp.) It is made by the oxidation of toluene-o-sulphonamide with alkaline permanganate. Saccharin has about 550 times the sweetening power of sucrose, and is used extensively as a sweetening agent, usually in the form of the sodium salt. The use of saccharin is restricted in the U.S. [Pg.350]

NHCOCH3. White crystals, m.p. 18l-l83"C. Soluble sulphacetamide is the sodium salt which is soluble in water. Il is prepared by acetylating sulphanilamide and hydrolysing one acetyl group. Being more soluble than most of the sulphonamides it is used in treating infections of the urinary tract and of the conjunctiva. [Pg.376]

C10H10N4O2S. White powder, which darkens on exposure to light m.p. 255-256 C. Prepared by condensing p-acet-amidobenzenesulphonyl chloride with 2-aminopyrimidine and subsequent hydrolysis. Soluble sulphadiazine is the sodium salt. Sulphadiazine is the least toxic of the more potent sulphonamides. ... [Pg.376]

Sulfonic acids can come from the sulfonation of oil cuts from white oil production by sulfuric acid treatment. Sodium salts of alkylaromatic sulfonic acids are compounds whose aliphatic chains contain around 20 carbon atoms. The aromatic ring compounds are mixtures of benzene and naphthalene rings. [Pg.360]

The larger cations of Group 1 (K, Rb, Cs) can be precipitated from aqueous solution as white solids by addition of the reagent sodium tetraphenylborate, NaB(C( H5)4. Sodium can be precipitated as the yellow sodium zinc uranium oxide ethanoate (sodium zinc uranyl acetate). NaZn(U02)3(CH3C00)y. 9H2O. by adding a clear solution of zinc uranyl acetate in dilute ethanoic acid to a solution of a sodium salt. [Pg.136]

Heptaoxodiphosphoric acid, H PjO, as its old name suggests, is formed as one product when phosphoric(V) acid is heated (loss of water on heating leads to a mixture of acids). It forms two series of salts, the sodium salts, for example, have the formulae Na2H2P207 and Na4P207. [Pg.247]

Conversion of a sodium salt of a carboxylic acid into the free acid e.g., if R-SO H represents the cation exchange resin ... [Pg.56]

To prepare pure acetic acid (glacial acetic acid), the crude aqueous product is converted into the sodium salt, the latter dehydrated by fusionf and then heated with concentrated sulphuric acid anhydrous acetic acid, b.p. 118°, distils over. Only the preparation of aqueous acetic acid and of crystalline copper acetate is described below. [Pg.74]

Since hydroxylamine is usually available only in the form of its salts, e.g., the hydrochloride or sulphate, the aqueous solution of these salts is treated with sodium acetate or hydroxide to liberate the base before treatment with the aldehyde or ketone. Most oximes are weakly amphoteric in character, and may dissolve in aqueous sodium hydroxide as the sodium salt, from which they can be liberated by the addition of a weak acid, e.g., acetic acid. [Pg.93]

When the phenol contains a carboxylic acid group, e.g., m- or p-hydroxy-benzoic acid, the acetylated derivative will of course remain in solution as the sodium salt, but is precipitated when the solution is subsequently acidified. Salicylic acid, however, cannot be acetylated under these conditions. [Pg.109]

It should be emphasised that whereas the interaction of a sodium salt and an acid chloride is a convenient general laboratory method for preparing all classes of anhydrides, acetic anhydride is prepared on a large scale by other and cheaper methods. Industrial processes are based on reactions indicated by the equations ... [Pg.116]

The characteristic property of aliphatic nitrocompounds of the type RCHiKOj and RjCHNO, is that they are pseiido cids, I. e., whereas they are neutral in the normal form (A), they are able by tautomeric change under the influence of alkali to give the acidic hydroxy form (B) which thus in turn gives the sodium salt (C). When this sodium salt is treated with one equivalent of hydrochloric acid, the acid form (B) is at once regenerated, and then more slowly reverts to the more stable normal form (A). [Pg.131]


See other pages where Salts sodium is mentioned: [Pg.13]    [Pg.19]    [Pg.59]    [Pg.92]    [Pg.94]    [Pg.97]    [Pg.106]    [Pg.121]    [Pg.163]    [Pg.204]    [Pg.213]    [Pg.215]    [Pg.270]    [Pg.280]    [Pg.386]    [Pg.395]    [Pg.408]    [Pg.413]    [Pg.428]    [Pg.240]    [Pg.2575]    [Pg.154]    [Pg.238]    [Pg.247]    [Pg.248]    [Pg.275]    [Pg.99]   
See also in sourсe #XX -- [ Pg.144 ]

See also in sourсe #XX -- [ Pg.3 , Pg.33 , Pg.49 , Pg.56 , Pg.66 ]

See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.117 ]

See also in sourсe #XX -- [ Pg.3178 ]

See also in sourсe #XX -- [ Pg.52 , Pg.53 ]

See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.350 ]

See also in sourсe #XX -- [ Pg.144 ]

See also in sourсe #XX -- [ Pg.16 ]




SEARCH



© 2024 chempedia.info