Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hquid ammonia

Continuous processes have been developed for the alcohols, operating under pressure with Hquid ammonia as solvent. Potassium hydroxide (206) or anion exchange resins (207) are suitable catalysts. However, the relatively small manufacturing volumes militate against continuous production. For a while a continuous catalytic plant operated in Raveima, Italy, designed to produce about 40,000 t/yr of methylbutynol for conversion to isoprene (208,209). [Pg.114]

Articles fabricated from FEP resins can be made bondable by surface treatment with a solution of sodium in Hquid ammonia, or naphthalenyl sodium in tetrahydrofuran (64) to faciUtate subsequent wetting. Exposing the surface to corona discharge (65) or amines at elevated temperatures in an oxidizing atmosphere (66) also makes the resins bondable. Some of the more recent work is described in References 67—69. [Pg.360]

Adberabibty of the film may be enhanced by its treatment with flame, electric discharge, boron trifluoride gas, activated gas plasma, dichromate sulfuric acid, and a solution of alkab metal ia Hquid ammonia (84—87). A coating of polyurethane, an alkyl polymethacrylate, or a chlotinated adhesive can be apphed to PVF surfaces to enhance adhesion (80,88,89). [Pg.381]

AHylestrenol (37) is prepared from (32), an intermediate in the synthesis of norethindrone. Treatment of (32) with ethanedithiol and catalytic boron trifluoride provides a thioketal. Reduction with sodium in Hquid ammonia results in the desired reductive elimination of the thioketal along with reduction of the 17-keto group. Oxidation of this alcohol with chromic acid in acetone followed by addition of aHyl magnesium bromide, completes the synthesis... [Pg.212]

Compound (12) can also be obtained by dissolving metal reactions through treatment with an excess of lithium—hquid ammonia in tert-huty alcohol (54). [Pg.253]

Sodium Borohydride. Sodium borohydride [16940-66-2] is a thermally stable, white crystalline soHd that decomposes in vacuo above 400°C. The heat of formation is —192 kJ/mol (—45.9 kcal/mol). NaBH is hygroscopic and absorbs water rapidly from moist air to form a dihydrate that decomposes slowly to sodium metaborate and hydrogen. It is soluble in many solvents including water, alcohols, Hquid ammonia and amines, glycol ethers, and dimethyl sulfoxide. [Pg.302]

Acetyhdes of the alkaU and alkaline-earth metals are formed by reaction of acetylene with the metal amide in anhydrous Hquid ammonia. [Pg.374]

Ethynylation. Base-catalyzed addition of acetylene to carbonyl compounds to form -yn-ols and -yn-glycols (see Acetylene-DERIVED chemicals) is a general and versatile reaction for the production of many commercially useful products. Finely divided KOH can be used in organic solvents or Hquid ammonia. The latter system is widely used for the production of pharmaceuticals and perfumes. The primary commercial appHcation of ethynylation is in the production of 2-butyne-l,4-diol from acetylene and formaldehyde using supported copper acetyHde as catalyst in an aqueous Hquid-fiHed system. [Pg.374]

Puriftcatioa of the cracked gas is accompHshed by water scmbbiag, an electrostatic precipitator, and Hquid ammonia absorption. [Pg.388]

A AlI lation. 1-Substitution is favored when the indole ring is deprotonated and the reaction medium promotes the nucleophilicity of the resulting indole anion. Conditions which typically result in A/-alkylation are generation of the sodium salt by sodium amide in Hquid ammonia, use of sodium hydride or a similar strong base in /V, /V- dim ethyl form am i de or dimethyl sulfoxide, or the use of phase-transfer conditions. [Pg.85]

Iron(III) bromide [10031-26-2], FeBr, is obtained by reaction of iron or inon(II) bromide with bromine at 170—200°C. The material is purified by sublimation ia a bromine atmosphere. The stmcture of inoa(III) bromide is analogous to that of inon(III) chloride. FeBr is less stable thermally than FeCl, as would be expected from the observation that Br is a stronger reductant than CF. Dissociation to inon(II) bromide and bromine is complete at ca 200°C. The hygroscopic, dark red, rhombic crystals of inon(III) bromide are readily soluble ia water, alcohol, ether, and acetic acid and are slightly soluble ia Hquid ammonia. Several hydrated species and a large number of adducts are known. Solutions of inon(III) bromide decompose to inon(II) bromide and bromine on boiling. Iron(III) bromide is used as a catalyst for the bromination of aromatic compounds. [Pg.436]

The ethynylation reaction takes place at 10—40°C and 2 MPa (20 atm) and hquid ammonia is the solvent. The methylbutynol is converted into methylbutenol by selective hydrogenation and then is dehydrated over alumina at 250—300°C. Polymerization-grade isoprene is obtained. [Pg.468]

Aromatic rings in lignin may be converted to cyclohexanol derivatives by catalytic hydrogenation at high temperatures (250°C) and pressures (20—35 MPa (200—350 atm)) using copper—chromium oxide as the catalyst (11). Similar reduction of aromatic to saturated rings has been achieved using sodium in hquid ammonia as reductants (12). [Pg.139]

Like the other alkah metals (45), lithium has appreciable solubiUty in Hquid ammonia. A saturated solution at —33.2° C contains 15.7 mol lithium in 1000 g of ammonia, and at 19°C has a density of 0.477, lower than that of any other known Hquid. Lithium reacts readily in Hquid ammonia to form... [Pg.224]

Lithium acetyhde also can be prepared directly in hquid ammonia from lithium metal or lithium amide and acetylene (134). In this form, the compound has been used in the preparation of -carotene and vitamin A (135), ethchlorvynol (136), and (7j--3-hexen-l-ol (leaf alcohol) (137). More recent synthetic processes involve preparing the lithium acetyhde in situ. Thus lithium diisopropylamide, prepared from //-butyUithium and the amine in THF at 0°C, is added to an acetylene-saturated solution of a ketosteroid to directly produce an ethynylated steroid (138). [Pg.229]

Some inorganic nonaqueous solvents can be used in systems operable at near room temperature, eg, thionyl chloride others, however, require special handling, eg, Hquid ammonia, which must be used below its boiling point of —33° C in a thermally insulated container and in an inert atmosphere. [Pg.133]

Potassium superoxide is produced commercially by spraying molten potassium iato an air stream, which may be enriched with oxygen. Excess air is used to dissipate the heat of reaction and to maintain the temperature at ca 300°C. It can also be prepared ia a highly pure state by oxidizing potassium metal that is dissolved ia Hquid ammonia at —50° C. [Pg.98]

Trickle bed reaction of diol (12) using amine solvents (41) has been found effective for producing PDCHA, and heavy hydrocarbon codistiUation may be used to enhance diamine purification from contaminant monoamines (42). Continuous flow amination of the cycloaUphatic diol in a Hquid ammonia mixed feed gives >90% yields of cycloaUphatic diamine over reduced Co /Ni/Cu catalyst on phosphoric acid-treated alumina at 220°C with to yield a system pressure of 30 MPa (4350 psi) (43). [Pg.210]

Potassium dissolves in Hquid ammonia, but the conversion of a small amount of the metallic potassium to the metallic amide takes several days. By applying the same technique using sodium metal, sodium amide [7782-92-5] NaNH2, a white soHd, can be formed. [Pg.338]

Heating metallic lithium in a stream of gaseous ammonia gives lithium amide [7782-89-0] LiNH2, which may also be prepared from Hquid ammonia and lithium in the presence of platinum black. Amides of the alkaH metals can be prepared by double-decomposition reactions in Hquid ammonia. For example... [Pg.338]

Chevron s WWT (wastewater treatment) process treats refinery sour water for reuse, producing ammonia and hydrogen sulfide [7783-06-04] as by-products (100). Degassed sour water is fed to the first of two strippers. Here hydrogen sulfide is stripped overhead while water and ammonia flow out the column bottoms. The bottoms from the first stripper is fed to the second stripper which produces ammonia as the overhead product. The gaseous ammonia is next treated for hydrogen sulfide and water removal, compressed, and further purified. Ammonia recovery options include anhydrous Hquid ammonia, aqueous Hquid ammonia, and ammonia vapor for incineration. There are more than 20 reported units in operation, the aimual production of ammonia from this process is about 200,000 t. [Pg.359]

Pyrrole is soluble in alcohol, benzene, and diethyl ether, but is only sparingly soluble in water and in aqueous alkaUes. It dissolves with decomposition in dilute acids. Pyrroles with substituents in the -position are usually less soluble in polar solvents than the corresponding a-substituted pyrroles. Pyrroles that have no substituent on nitrogen readily lose a proton to form the resonance-stabilized pyrrolyl anion, and alkaU metals react with it in hquid ammonia to form salts. However, pyrrole pK = ca 17.5) is a weaker acid than methanol (11). The acidity of the pyrrole hydrogen is gready increased by electron-withdrawing groups, eg, the pK of 2,5-dinitropyrrole [32602-96-3] is 3.6 (12,13). [Pg.354]

Amina.tlon, 2-Antinoquinoline [580-22-3] is obtained from quinoline in 80% yield by treatment with barium amide in Hquid ammonia (19). This product, as weU as 3-aminoquinoHne [580-17-6] and 4-antino quinoline [578-68-7], maybe obtained through nucleophilic substitution of the corresponding chloroquinolines with ammonia. [Pg.389]

Hydroisoquinolines. In addition to the ring-closure reactions previously cited, a variety of reduction methods are available for the synthesis of these important ring systems. Lithium aluminum hydride or sodium in Hquid ammonia convert isoquinoline to 1,2-dihydroisoquinoline (175). Further reduction of this intermediate or reduction of isoquinoline with tin and hydrochloric acid, sodium and alcohol, or catalyticaHy using platinum produces... [Pg.398]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

Sodium forms unstable solutions in Hquid ammonia, where a slow reaction takes place to form sodamide and hydrogen, as foUows ... [Pg.162]

Naphthalene sodium prepared in dimethyl ether or another appropriate solvent, or metallic sodium dissolved in Hquid ammonia or dimethyl sulfoxide, is used to treat polyfluorocarbon and other resins to promote adhesion (138—140). Sodium, usually in dispersed form, is used to desulfurize a variety of hydrocarbon stocks (141). The process is most useful for removal of small amounts of sulfur remaining after hydrodesulfurization. [Pg.169]

An exception exists to the monobasic nature of sulfamic acid when it dissolves ia Hquid ammonia. Sodium, potassium, etc. add both to the amido and sulfonic portions of the molecule to give salts, such as NaSO NHNa. [Pg.62]


See other pages where Hquid ammonia is mentioned: [Pg.845]    [Pg.902]    [Pg.902]    [Pg.322]    [Pg.230]    [Pg.374]    [Pg.476]    [Pg.100]    [Pg.116]    [Pg.492]    [Pg.98]    [Pg.98]    [Pg.516]    [Pg.220]    [Pg.261]    [Pg.261]    [Pg.285]    [Pg.337]    [Pg.368]    [Pg.398]    [Pg.23]    [Pg.167]    [Pg.180]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Hquid ammonia physical properties

Hquid ammonia reactions

Hquid ammonia solutions

© 2024 chempedia.info