Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton Sources

As intimated above, termination occurs in these systems by reactions with water or other proton sources ... [Pg.414]

The chemical pathways leading to acid generation for both direct irradiation and photosensitization (both electron transfer and triplet mechanisms) are complex and at present not fully characterized. Radicals, cations, and radical cations aH have been proposed as reactive intermediates, with the latter two species beHeved to be sources of the photogenerated acid (Fig. 20) (53). In the case of electron-transfer photosensitization, aromatic radical cations (generated from the photosensitizer) are beHeved to be a proton source as weU (54). [Pg.124]

Friedel-Crafts alkylation using alkenes has important industrial appHcations. The ethylation of benzene with ethylene to ethylbenzene used in the manufacture of styrene, is one of the largest scale industrial processes. The reaction is done under the catalysis of AlCl in the presence of a proton source, ie, H2O, HCl, etc, although other catalysts have also gained significance. [Pg.551]

Lewis acid catalysts, such as AlCl or BF, coordinate strongly with non-bonded electron pairs but they iateract only weakly with bonded electron pairs. Therefore, n-donon reagents, such as alkyl haUdes, can react with Lewis acid catalysts even under complete exclusion of moisture or any other proton source ... [Pg.552]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

Unless working with superdried systems or in the presence of proton traps, adventitious water is always present as a proton source. Polymeriza tion rates, monomer conversions, and to some extent polymer molecular weights are dependent on the amount of protic impurities therefore, weU-estabHshed drying methods should be followed to obtain reproducible results. The importance is not the elimination of the last trace of adventitious water, a heroic task, but to estabhsh a more or less constant level of dryness. [Pg.244]

In place of a proton source, ie, a Briimsted acid, a cation source such as an alkyl haUde, ester, or ether can be used in conjunction with a Friedel-Crafts acid. Initiation with the ether-based initiating systems in most cases involves the haUde derivative which arises upon fast haUdation by the Friedel-Crafts acid, MX (2). [Pg.244]

In the presence of a proton source, the radical anion is protonated and further reduction occurs (the Birch reduction Part B, Section 5.5.1). In general, when no proton source is present, it is relatively difficult to add a second electron. Solutions of the radical anions of aromatic hydrocarbons can be maintained for relatively long periods in the absence of oxygen or protons. [Pg.681]

Initiation. A Friedel-Craft acid (hydrochloric acid, water, phenol) is used as initiator together with a proton source ( co-initiator , BF3 or AICI3 are the most common). The mixture produces a catiogen which is the true initiating species. [Pg.605]

The term Birch reduction was originally applied to the reduction of aromatic compounds by alkali metals and an alcohol in ammonia. In recent years many chemists have used the term to include all metal-ammonia reductions, whether an alcoholic proton source is present or not. The author prefers to use the term Birch reduction to designate any reduction carried out in ammonia with a metal and a proton donor as or more acidic than an alcohol, since Birch customarily used such a proton donor in his extensive pioneering work. The term metal-ammonia reduction is best reserved for reductions in which ammonia is the only proton donor present. This distinction in terminology emphasizes the importance of the acidity of the proton donor in the reduction process. [Pg.12]

Electronegatively substituted acetylenes, such as dimethyl acetylenedicar-boxylate, do not react under normal conditions but will add the elements of hydrogen fluoride by reaction with fluoride ion (e g, CsF or tetraalkylammonium dihydrogen trifluoride) and a proton source under phase-transfer conditions [49, 50] (equation 8)... [Pg.58]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

Organolithium compounds are sometimes prepared in hydrocarbon solvents such as pentane and hexane, but nonnally diethyl ether is used. It is especially important that the solvent be anhydrous. Even trace amounts of water or alcohols react with lithium to form insoluble lithium hydroxide or lithium alkoxides that coat the surface of the metal and prevent it from reacting with the alkyl halide. Furthennore, organolithium reagents are strong bases and react rapidly with even weak proton sources to fonn hydrocarbons. We shall discuss this property of organolithium reagents in Section 14.5. [Pg.590]

In the reactions of benzyne with enamines, arylated enamines or amino-benzocyclobutenes can be obtained, depending on reaction conditions and the structure of the enamine. Thus the presence of a proton source such as a secondary amine will favor the enamine product through capture of the zwitterionic intermediate, whereas in the absence of protons one sees... [Pg.381]

Sml2, THE or DMPU, it, 76-94% yield. Deprotection of the pyridinesul-fonamide in the presence of a cinnamoyl group was possible when done without a proton source. BOC, A-benzyl, A-allyl, and trifluoroacetamido groups were all stable to these conditions. ... [Pg.611]

In terms of the final loss of aniline after ring closure, the fact that reactions using EtsN and BU3N, (ammonium ion as proton source) occurred at the same rate as the reactions with methoxide base (MeOH as proton source) suggested a lack of general acid catalysis. Also, it was found that varying the amount of available acid did not change the rate of cyclization appreciably. ... [Pg.359]

This was confirmed by taking a sample of 9-acetylanthracene and allowing it to isomerize in the ionic liquid. This gave a mixture of anthracene, 1,5-diacetylan-thracene and 1,8-diacetylanthracene. It should be noted that a proton source was needed for this reaction to occur, implying an acid-catalyzed mechanism (Scheme 5.1-65) [95]. [Pg.206]

The mechanism of the oxidation reaction, resulting from treatment of an alcohol with dicyclohexylcarbodiimide and methyl sulfoxide in the presence of a proton source, was elucidated by isotope experiments (24). These confirmed that the reaction proceeded by formation of a... [Pg.66]

In the case of a slow protonation rate (with inefficient proton donors and/or low concentrations of the proton source), the alternative could be an EECC mechanism through a disproportionation process, still at the potential of the first step. [Pg.1007]

The relative importance of the disproportionation process (SET between two anion radicals) depends principally on the thermodynamic constant (K). It can be easily determined more or less accurately from the potential difference existing between the first cathodic peak and the second one. (An exact calculation would be possible from the thermodynamic potentials of the two reversible transfers in the absence of proton sources and at reasonable sweep rates so as to inhibit any undesirable chemical reaction.)... [Pg.1007]

This method has been extended to include imines other than A -thia-zolines, hence enabling the synthesis of multi ring-fused 2-pyridones (28,30, and 33, Scheme 8). Thus, by reacting dihydroisoquinoUnes 27 or /1-carboUnes 29 with acyl Meldrum s acid derivatives 24, a set of new ring-fused heterocycles was prepared in moderate to excellent yields (a and b. Scheme 8). These systems were prepared by using trifluoro acetic acid (TFA) as a proton source instead of solutions saturated with HCl (g). The switch of acid proved to be advantageous since it reduced the formation of by-products and increased the isolated yields. From a practical point of view, TFA is also su-... [Pg.322]

A ruthenium porphyrin hydride complex was lirst prepared by protonation of the dianion, [Ru(TTP) in THF using benzoic acid or water as the proton source. The diamagnetic complex, formulated as the anionic Ru(If) hydride Ru(TTP)(H )(THF)l , showed by H NMR spectroscopy that the two faces of the porphyrin were not equivalent, and the hydride resonance appeared dramatically shifted upheld to —57.04 ppm. The hydride ligand in the osmium analogue resonates at —66.06 ppm. Reaction of [Ru(TTP)(H)(THF)j with excess benzoic-acid led to loss of the hydride ligand and formation of Ru(TTP)(THF)2. [Pg.278]


See other pages where Proton Sources is mentioned: [Pg.463]    [Pg.590]    [Pg.594]    [Pg.476]    [Pg.412]    [Pg.594]    [Pg.89]    [Pg.97]    [Pg.154]    [Pg.164]    [Pg.49]    [Pg.18]    [Pg.180]    [Pg.209]    [Pg.292]    [Pg.298]    [Pg.320]    [Pg.67]    [Pg.27]    [Pg.216]    [Pg.216]    [Pg.419]    [Pg.53]    [Pg.297]    [Pg.933]    [Pg.1004]    [Pg.571]    [Pg.1037]    [Pg.6]   
See also in sourсe #XX -- [ Pg.65 , Pg.169 ]

See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Achiral proton sources

Additives/cosolvents proton sources

Alcohols proton source

Ammonia added proton source

Chiral proton sources

Metal and proton source

Proton beam source

Source of Protons

© 2024 chempedia.info