Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water salt solubility

Isobutyric acid, dimethylacetic acid, 2-methylpropanoic acid, (CHjjjCH COOH, colourless syrupy liquid with an unpleasant odour b.p. 154°C. Prepared by oxidation of 2-methylpropanol with K2Cr207 and H2SO4. Salts soluble in water. Used in alkaline solution for sweetening gasoline. [Pg.71]

C4HjOftK. Colourless salt, soluble boiling water occurs in grape juice, deposited as argol during fermentation. Used in baking powders (liberates CO2 with NaHC03). [Pg.325]

The cobalt catalyst can be introduced into the reactor in any convenient form, such as the hydrocarbon-soluble cobalt naphthenate [61789-51 -3] as it is converted in the reaction to dicobalt octacarbonyl [15226-74-17, Co2(CO)g, the precursor to cobalt hydrocarbonyl [16842-03-8] HCo(CO)4, the active catalyst species. Some of the methods used to recover cobalt values for reuse are (11) conversion to an inorganic salt soluble ia water conversion to an organic salt soluble ia water or an organic solvent treatment with aqueous acid or alkah to recover part or all of the HCo(CO)4 ia the aqueous phase and conversion to metallic cobalt by thermal or chemical means. [Pg.458]

Iron(II) hydroxide [18624-44-7], Fe(OH)2, is prepared by precipitation of an iron(II) salt solution by strong base in the absence of air. It occurs as pale green, hexagonal crystals or a white amorphous powder. It is practically insoluble in water, fairly soluble in ammonium salt solutions, and soluble in acids and in concentrated NaOH solution. It is slowly oxidized by air. Conversion to Fe203 atH20 is eventually complete. [Pg.437]

Choline Chloride. This compound [67-48-17 is a crystalline dehquescent salt, usually with a slight odor of trimethyl amine (6). It is very soluble in water, freely soluble in alcohol, slightly soluble in acetone and chloroform, and practically insoluble in ether, benzene, and ligroin. Its aqueous solutions ate neutral to litmus and are stable (4). The specific gravity of these solutions is a straight-line function between pure water and the value of 1.10 for the 80% solution, which represents the approximate limit of solubiUty. Choline chloride absorbs moisture from the atmosphere at relative humidities greater than 20% at 25.5°C. [Pg.101]

Agriculture ndNutrition. Cobalt salts, soluble in water or stomach acid, are added to soils and animal feeds to correct cobalt deficiencies. In soil apphcation the cobalt is readily assimilated into the plants and subsequendy made available to the animals (56). Plants do not seem to be affected by the cobalt uptake from the soil. Cobalt salts are also added to salt blocks or pellets (see Feeds and feed additives). [Pg.382]

D C Red No. 36 (27) is an unsulfonated pigment. It contains no groups capable of salt formation and is thus insoluble direcdy on coupling. Its chlorine group ortho to the azo group results in a stericaHy hindered molecule with low solubiUty and excellent light stabiUty. The unsulfonated dyes Citms Red No. 2 (8) and D C Red No. 17 (20) are insoluble in water but soluble in aromatic solvents. [Pg.443]

Acids that are solids can be purified in this way, except that distillation is replaced by repeated crystallisation (preferable from at least two different solvents such as water, alcohol or aqueous alcohol, toluene, toluene/petroleum ether or acetic acid.) Water-insoluble acids can be partially purified by dissolution in N sodium hydroxide solution and precipitation with dilute mineral acid. If the acid is required to be free from sodium ions, then it is better to dissolve the acid in hot N ammonia, heat to ca 80°, adding slightly more than an equal volume of N formic acid and allowing to cool slowly for crystallisation. Any ammonia, formic acid or ammonium formate that adhere to the acid are removed when the acid is dried in a vacuum — they are volatile. The separation and purification of naturally occurring fatty acids, based on distillation, salt solubility and low temperature crystallisation, are described by K.S.Markley (Ed.), Fatty Acids, 2nd Edn, part 3, Chap. 20, Interscience, New York, 1964. [Pg.62]

Because of their zwitterionic nature, amino acids are generally soluble in water. Their solubility in organic solvents rises as the fat-soluble portion of the molecule increases. The likeliest impurities are traces of salts, heavy metal ions, proteins and other amino acids. Purification of these is usually easy, by recrystallisation from water or ethanol/water mixtures. The amino acid is dissolved in the boiling solvent, decolorised if necessary by boiling with Ig of acid-washed charcoal/lOOg amino acid, then filtered hot, chilled, and set aside for several hours to crystallise. The crystals are filtered off, washed with ethanol, then ether, and dried. [Pg.64]

Thioacids have a most disagreeable odour and slowly decompose in air. Their boiling points are lower than those of the coiTcsponding oxygen counterparts and they are less soluble in water, but soluble in most organic solvents. An important dithioacid is dithiocarbonic acid (HO—CS2H). Whilst the free acid is unknown, many derivatives have been prepared such as potassium xanthate giving a yellow precipitate of copper xanthate with copper salts ... [Pg.38]

In regenerating agents for waste oils from washing of mechanical parts, based on sodium silicate and water, salts of alkylphosphates are used as surfactants on account of their good solubility [232]. [Pg.602]

Amaranth (E 123, Cl Food Red 9) is a mono azo dye, with the chemical name trisodium 3-hydroxy-4(4-sulfonato-l-naphtylazo)-2,7-naphthalenedisulfonate) (or trisodium 2-hydroxy-l-(4-sulfonato-l-napthylazo) naphthalene-3,6-disulfonate). The calcium and potassium salts are also permitted. Amaranth is a reddish-brown powder or granules, soluble in water, sparingly soluble in ethanol, with a maximum absorption in water at 520 nm (Ei " = 440). It has been banned in the US since 1976. " Amaranth can be used also as a dye for cosmetics, synthetic fibers, leather, papers, and some plastics. [Pg.605]

Patent Blue V (E 131, Cl Food Blue 5, Patent Blue 5) is a triarylmethane dye, the calcium or sodium salt of 2-[(4-diethylaminophenyl)(4-diethylimino-2,5-cyclo-hexadien-l-ylidene)methyl]-4-hydroxy-l,5-benzenedisulfonate. It is a dark-blue powder, soluble in water, slightly soluble in ethanol. The absorption maximum is 638 nm in water, pH 5, with = 2000. Patent blue is not permitted for use as... [Pg.611]

Quinoline yellow (E 104, Cl Food Yellow 13) is a quinophthalone dye consisting of a mixture of disulfonates (minimum 80%), monosulfonates (maximum 15%), and trisulfonates (maximum 7%) as sodium salts, obtained by the sulfonation of 2-(2-quinolyl)-l,3-indandione. The calcium and potassium salts are also permitted. Quinoline yellow is a yellow powder or granules, soluble in water, sparingly soluble in ethanol. The absorption maximum is at 411 nm in aqueous acetic acid solution, pH 5, = 865. It is not permitted as food colorant in the US. "... [Pg.612]

There are problems as well in the absorption of certain drugs in the presence of specific food components. L-Dopa absorption may be inhibited in the presence of certain amino acids formed from the digestion of proteins [43], The absorption of tetracycline is reduced by calcium salts present in dairy foods and by several other cations, including magnesium and aluminum [115-117], which are often present in antacid preparations. In addition, iron and zinc have been shown to reduce tetracycline absorption [118], Figure 17 illustrates several of these interactions. These cations react with tetracycline to form a water-in-soluble and nonabsorbable complex. Obviously, these offending materials should not be co-administered with tetracycline antibiotics. [Pg.62]

Phosphoric and polyphosphoric acid esters Perfluorinated anionics Sulfonic acid salts Strong surface tension reducers Good oil in water emulsifiers Soluble in polar organics Resistant to biodegradation High chemical stability Resistant to acid and alkaline hydrolysis... [Pg.738]

Delayed-action cytotoxins that inhibits protein synthesis (ribosomal inactivating protein). They are obtained from the seed of the Jequirity beans plant (Abrus precatorius). Typically yellowish-white powders that are insoluble in distilled water but soluble in salt water. They are fairly heat stable. [Pg.478]

Silver occurs naturally in several oxidation states, the most common being elemental silver (Ag°) and the monovalent ion (Ag+). Soluble silver salts are, in general, more toxic than insoluble salts. In natural waters, the soluble monovalent species is the form of environmental concern. Sorption is the dominant process that controls silver partitioning in water and its movements in soils and sediments. As discussed later, silver enters the animal body through inhalation, ingestion, mucous membranes, and broken skin. The interspecies differences in the ability of animals to accumulate, retain, and eliminate silver are large. Almost all of the total silver intake is usually... [Pg.534]

Nitrogen solubility index is inversely related to protein level, i.e., as the protein level increases, NSI decreases (8). Another factor related to solubility of seed nitrogen in a flour and distilled water suspension is the concentration of water-soluble naturally occurring salts, since salt-soluble globulins are the major proteins found in peas (21). Also, differences in pea mineral content may play a role in NSI. [Pg.29]

Soy proteins are used extensively in meat and meat products by the military, the school lunch program and consumers to save money. Their ultimate acceptability is equally dependent upon the nutritional, chemical, sensory and shelf life changes which occur when they are added. Soy proteins in meat products such as ground beef inhibit rancidity, improve tenderness, increase moisture retention, decrease cooking shrink, fat dispersion during cooking and have no important effect on microbiological condition. Concomittantly, inordinate amounts of added soy protein may cause the meat product to be too soft, exhibit an undesirable flavor and may lead to a decreased PER and a deficiency in B-vitamins and trace minerals. In emulsified meat products, soy protein effectively binds water but does not emulsify fat as well as salt soluble muscle protein. Prudent incorporation of plant proteins can result in an improvement of the quality of the meat product with inconsequential adverse effects. [Pg.79]

Suppose we add a solution of Na2S04 to this equilibrium system. The additional sulfate ion will disrupt the equilibrium by Le Chatclier s principle and shift it to the left. This decreases the solubility. The same would be true if you tried to dissolve PbS04 in a solution of Na2S04 instead of pure water—the solubility would be less. This application of Le Chatelier s principle to equilibrium systems of a slightly soluble salt is the common-ion effect. [Pg.236]


See other pages where Water salt solubility is mentioned: [Pg.339]    [Pg.339]    [Pg.163]    [Pg.208]    [Pg.236]    [Pg.516]    [Pg.517]    [Pg.185]    [Pg.149]    [Pg.94]    [Pg.163]    [Pg.213]    [Pg.324]    [Pg.290]    [Pg.115]    [Pg.607]    [Pg.611]    [Pg.400]    [Pg.625]    [Pg.328]    [Pg.536]    [Pg.818]    [Pg.98]    [Pg.313]    [Pg.229]    [Pg.175]   
See also in sourсe #XX -- [ Pg.374 ]




SEARCH



Bromine, solubility, salt soln water

Salt solubility

Salt water

Salts water-soluble compounds preparation

Salts, soluble

Solubility of Salts and Hydroxides in Water

Solubility salts in water

Water solubility of salts

Water-soluble compounds preparation through salt formation

Water-soluble phosphonium salts

© 2024 chempedia.info