Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonates poly

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

AppHcation of an adhesion-promoting paint before metal spraying improves the coating. Color-coded paints, which indicate compatibiHty with specific plastics, can be appHed at 20 times the rate of grit blasting, typically at 0.025-mm dry film thickness. The main test and control method is cross-hatch adhesion. Among the most common plastics coated with such paints are polycarbonate, poly(phenylene ether), polystyrene, ABS, poly(vinyl chloride), polyethylene, polyester, and polyetherimide. [Pg.134]

Alloys and blends are of great commercial significance. The archetype of "alloys" is the poly(phenylene oxide)—polystyrene resin discussed eadier. Important examples of blends based on immiscible resins are afforded by the polycarbonate—poly(butylene terephthalate) resins and polycarbonate—ABS blends. [Pg.277]

Engineering resins can be combined with either other engineering resins or commodity resins. Some commercially successhil blends of engineering resins with other engineering resins include poly(butylene terephthalate)—poly(ethylene terephthalate), polycarbonate—poly(butylene terephthalate), polycarbonate—poly(ethylene terephthalate), polysulfone—poly (ethylene terephthalate), and poly(phenylene oxide)—nylon. Commercial blends of engineering resins with other resins include modified poly(butylene terephthalate), polycarbonate—ABS, polycarbonate—styrene maleic anhydride, poly(phenylene oxide)—polystyrene, and nylon—polyethylene. [Pg.277]

Table 18. Properties of Polycarbonate—Poly(butylene terephthalate) Blends ... Table 18. Properties of Polycarbonate—Poly(butylene terephthalate) Blends ...
Examples shown in this chapter are for PMMA. Other polymers can be separated as well. The polymers separated so far (1,2) include polystyrene, poly(a-methylstyrene), polycaprolactone, polycarbonate, poly(hexyl isocyanate), polytetrahydrofuran, poly (vinyl methyl ether), and polyvinylpyrrolidone. [Pg.613]

Oxidoreductases Transferases Hydrolases Lyases Isomerases Ligases Phenolic polymers, polyanilines, vinyl polymers Polysaccharides, cyclic oligosaccharides, polyesters Polysaccharides, polyesters, polycarbonates, poly(amino acid)s, polyphosphates... [Pg.206]

The photoablation process consists of the absorption of a short-wavelength laser pulse to break covalent bonds in polymer molecules and eject decomposed polymer fragments. Channels of various geometries and dimensions can be obtained using an appropriate mask. Many commercially available polymers can be photoablated, including polycarbonate, poly(methyl methacrylate) (PMMA), polystyrene, nitrocellulose, poly(ethylene terphtalate) (PET), and poly(tetrafluoroethylene) (Teflon). ... [Pg.495]

Polycarbonates Poly(ether ether ketone) Poly(ether ketone) Poly(ether sulfones) Poly(phenylene sulfide) Polyethylene Acetal Polyolefins... [Pg.243]

Lu L, Huang K (2005) Synthesis and characteristics of a novel aliphatic polycarbonate, poly [(propylene oxide)-co-(carbon dioxide)-co-(gamma-butyrolactone)]. Polym hit 54 870-874... [Pg.46]

Nylon, polyacetal, polycarbonates, poly(2,6-dimethyl)phenylene oxide (PPO), polyimides, polyphenylene sulfide (PPS), polyphenylene sulfones, polyaryl sulfones, polyalkylene phthalates, and polyarylether ketones (PEEK) are stiff high-melting polymers which are classified as engineering plastics. The formulas for the repeating units of some of these engineering plastics are shown in Figure 1.15. [Pg.15]

UV curable coatings are applied to a variety of flat, rigid substrates, such as particle board, medium- and high-density fiberboard, wood veneers, polycarbonate, poly(methylmethacrylate), paper, and metal sheets and foils. An example of a formulation for UV curable coatings is in Table 7.1. [Pg.143]

Research Focus Synthesis of polycarbonates, poly(acetal carbonate)s, poly(spiroacetal)s, polyesters, and polyurethanes using dihydroxyacetone. [Pg.617]

S.C. Tjong and Y.Z. Meng, Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly(acrylonitrile-buta-diene-styrene) blends, Enr. Polym. J., 36(1) 123-129, January 2000. [Pg.257]

By definition, thermoplastics have limitations at elevated temperatures. It is in this particular property that fibrous glass can lead to remarkable improvements. However, a sharp division exists for reinforced thermoplastics. The various reinforced thermoplastics can be put in two groups relative to DTUL. These consist of amorphous and crystalline or semicrystalline polymers. The amorphous polymers such as styrene-acrylonitrile, polystyrene, polycarbonate, poly (vinyl chloride), and acrylo-nitrile-butadiene-styrene are generally limited to modest DTUL improvements, usually on the order of 20°F with 20% glass. However, crystalline polymers such as the nylons, linear polyethylene, polypropyl-... [Pg.470]

The approach developed in this paper, combining on the one side experimental techniques (dynamic mechanical analysis, dielectric relaxation, solid-state 1H, 2H and 13C NMR on nuclei at natural abundance or through specific labelling), and on the other side atomistic modelling, allows one to reach quite a detailed description of the motions involved in the solid-state transitions of amorphous polymers. Bisphenol A polycarbonate, poly(methyl methacrylate) and its maleimide and glutarimide copolymers give perfect illustrations of the level of detail that can be achieved. [Pg.211]

The antiplasticization phenomenon is presumably common to all the polymers exhibiting a relatively strong (5 transition, well separated from the a transition. It has been observed for both linear (PVC, polycarbonate, poly-sulphones) and network polymers (amine-crosslinked epoxies). For the case of thermosets, the phenomenon may be a consequence of both internal (change of the network structure) and external (incorporation of miscible additives) modifications of the structure or the composition but it always seems to be a consequence of the plasticization, as shown in Fig. 11.7. [Pg.345]

Keywords. Controlled drug delivery, Drug release, Microspheres, Degradation, Erosion, Polylactide, Poly(glycolide-co-lactide), Poly(e-caprolactone), Poly(hydroxyalkanoates) Polyanhydrides, Polycarbonates, Poly(orthoesters), Poly( l,5-dioxepan-2-one)... [Pg.67]

Cellulose acetate Cellulose acetate butyrate Polyamide 6 Polyamide 6.6 Polyamides 11, 12 Polycarbonate Poly(ether ether ketone) Polyethylene low density high density Polyethylene terephthalate) Poly(methyl methacrylate) Polyoxymethylene Poly(phenylene oxide)... [Pg.144]

Burning may be considered another means of oxidation. Non-burning plastics are a must in commercial constructions according to building codes and are often required for automotive, electronic, and electrical applications. From the numerous thermoplastics, only the halogen-containing polymers, polyamides, polycarbonate, poly(phenylene oxide), polysulfone, and polyimides are self-extinguishing. Even these, such as poly (vinyl chloride), may become flammable when plasticized with a flammable plasticizer. Fire control can be the key to volume use of plastics. Polyester panels, urethane foam, and PVC tarpaulins account for nearly 90% of all fire retardants consumed. Consumption in 1967... [Pg.13]

Transparent Polymers. Amorphous thermoplastics, like poly (methyl methacrylate), polystyrene, SAN, PVC, or the cellulose esters are transparent and used for glazing, photographic film, blown bottles, or clear packaging containers. Only a few crystalline thermoplastics, like poly (4-methyl-l-pentane), where the crystalline and the amorphous phases have almost identical refractive indexes, or polycarbonate, which has smaller crystals than the wavelength of light, are also transparent. R. Kosfeld and co-workers analyzed the mobility of methyl groups in polycarbonate, poly (methyl methacrylate) and poly( -methyl styrene) by NMR spectroscopy. [Pg.14]

PB PBI PBMA PBO PBT(H) PBTP PC PCHMA PCTFE PDAP PDMS PE PEHD PELD PEMD PEC PEEK PEG PEI PEK PEN PEO PES PET PF PI PIB PMA PMMA PMI PMP POB POM PP PPE PPP PPPE PPQ PPS PPSU PS PSU PTFE PTMT PU PUR Poly(n.butylene) Poly(benzimidazole) Poly(n.butyl methacrylate) Poly(benzoxazole) Poly(benzthiazole) Poly(butylene glycol terephthalate) Polycarbonate Poly(cyclohexyl methacrylate) Poly(chloro-trifluoro ethylene) Poly(diallyl phthalate) Poly(dimethyl siloxane) Polyethylene High density polyethylene Low density polyethylene Medium density polyethylene Chlorinated polyethylene Poly-ether-ether ketone poly(ethylene glycol) Poly-ether-imide Poly-ether ketone Poly(ethylene-2,6-naphthalene dicarboxylate) Poly(ethylene oxide) Poly-ether sulfone Poly(ethylene terephthalate) Phenol formaldehyde resin Polyimide Polyisobutylene Poly(methyl acrylate) Poly(methyl methacrylate) Poly(methacryl imide) Poly(methylpentene) Poly(hydroxy-benzoate) Polyoxymethylene = polyacetal = polyformaldehyde Polypropylene Poly (2,6-dimethyl-l,4-phenylene ether) = Poly(phenylene oxide) Polyp araphenylene Poly(2,6-diphenyl-l,4-phenylene ether) Poly(phenyl quinoxaline) Polyphenylene sulfide, polysulfide Polyphenylene sulfone Polystyrene Polysulfone Poly(tetrafluoroethylene) Poly(tetramethylene terephthalate) Polyurethane Polyurethane rubber... [Pg.939]

PC P(C DMS) PCHMA polycarbonate poly(carbonate-co-dimethylsiloxane) poly(cyclohexyl methacrylate)... [Pg.143]

Volatile production occurs from polycarbonate by entirely thermal decomposition between 450 and 550°C yielding about 25% solid residue as well. The pyrogram of the most common aromatic polycarbonate, poly(bisphenol A carbonate) is displayed in Figure 12.10. Alkylphenols and phenol are the main constituents of the boiling range 180-250°C and... [Pg.338]

Fig. 25. Nominal stress, 02, versus extension ratio, X2, for polycarbonate, poly(methyl methacrylate) and pre-oriented polystyrene stretched withd = 6 x 10 s at 129 °C, 80 °C and 90 °C, respectively... Fig. 25. Nominal stress, 02, versus extension ratio, X2, for polycarbonate, poly(methyl methacrylate) and pre-oriented polystyrene stretched withd = 6 x 10 s at 129 °C, 80 °C and 90 °C, respectively...

See other pages where Polycarbonates poly is mentioned: [Pg.151]    [Pg.260]    [Pg.244]    [Pg.77]    [Pg.617]    [Pg.352]    [Pg.331]    [Pg.151]    [Pg.137]    [Pg.298]    [Pg.102]    [Pg.305]    [Pg.38]    [Pg.354]    [Pg.168]    [Pg.260]    [Pg.58]    [Pg.457]    [Pg.402]   


SEARCH



Poly Polycarbonate

Poly Polycarbonate

Poly blend with polycarbonate

Poly tyrosine-derived polycarbonates

Polycarbonate blend with poly(methyl

Polycarbonate used with flexible poly

Polycarbonate-poly blends

Polycarbonate-poly block copolymer

Polycarbonates and poly(iminocarbonates)

Polymer polycarbonate + poly(butylene

Polymer polycarbonate + poly(ethylene

© 2024 chempedia.info