Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volatile products

The desire to understand catalytic chemistry was one of the motivating forces underlying the development of surface science. In a catalytic reaction, the reactants first adsorb onto the surface and then react with each other to fonn volatile product(s). The substrate itself is not affected by the reaction, but the reaction would not occur without its presence. Types of catalytic reactions include exchange, recombination, unimolecular decomposition, and bimolecular reactions. A reaction would be considered to be of the Langmuir-Hinshelwood type if both reactants first adsorbed onto the surface, and then reacted to fonn the products. If one reactant first adsorbs, and the other then reacts with it directly from the gas phase, the reaction is of the Eley-Ridel type. Catalytic reactions are discussed in more detail in section A3.10 and section C2.8. [Pg.302]

The subsequent reaction of tire F atoms witli tire silicon surface leads to tire fonnation of tire volatile product SiF ... [Pg.2805]

Reflux Distillation Unit. The apparatus shown in Fig. 38 is a specially designed distillation-unit that can be used for boiling liquids under reflux, followed by distillation. The unit consists of a vertical water-condenser A, the top of which is fused to the side-arm condenser B. The flask C is attached by a cork to A. This apparatus is particularly suitable for the hydrolysis of esters (p. 99) and anilides (p. 109), on a small scale. For example an ester is heated under reflux with sodium hydroxide solution while water is passed through the vertical condenser water is then run out of the vertical condenser and passed through the inclined condenser. The rate of heating is increased and any volatile product will then distil over. [Pg.64]

It frequently happens that more than one volatile product is evolved, a fact which may be of considerable value. For example, benzamide, CeHjCONHt, will give off first ammonia, and then benzonitrile and benzene on stronger heating salicylamide, HOC H CONHj, will give off ammonia and then phenol. Sulphanilamide, NH,C,H,SO,NH (p. 181), gives off ammonia and aniline. [Pg.329]

Heating the acids or their salts with soda lime eliminates the carboxyl group, volatile products being often detectable. [Pg.347]

Beckmann rearrangement of benzophenone oxime to benz-anilide. Dissolve 2 g. of benzophenone oxime in 20 ml. of anhydrous ether in a small conical flask and add 3 g. of powdered phosphorus pentachloride (or 3 ml. of pure tbionyl chloride). Distil off the solvent and other volatile products on a water bath CAUTION ether), add 25 ml. of water, boil for several minutes and break up any lumps which may be formed. Decant the supernatant liquid, and recrystallise, in the same vessel, from boiling alcohol. The product is benzanilide, m.p. 163° confirm this by a mixed m.p. determination with an authentic specimen. [Pg.741]

Note 1. If the lithiation of the allenic ether is performed with butyllithium in hexane and THF as a co-solvent, subsequent alkylation (in the presence of a small amount of HMPT) is much faster. The separation of the volatile product from the hexane and THF is difficult, however. [Pg.38]

Although Pd is cheaper than Rh and Pt, it is still expensive. In Pd(0)- or Pd(ll)-catalyzed reactions, particularly in commercial processes, repeated use of Pd catalysts is required. When the products are low-boiling, they can be separated from the catalyst by distillation. The Wacker process for the production of acetaldehyde is an example. For less volatile products, there are several approaches to the economical uses of Pd catalysts. As one method, an alkyldi-phenylphosphine 9, in which the alkyl group is a polyethylene chain, is prepared as shown. The Pd complex of this phosphine has low solubility in some organic solvents such as toluene at room temperature, and is soluble at higher temperature[28]. Pd(0)-catalyzed reactions such as an allylation reaction of nucleophiles using this complex as a catalyst proceed smoothly at higher temperatures. After the reaction, the Pd complex precipitates and is recovered when the reaction mixture is cooled. [Pg.5]

A second approach to gravimetry is to thermally or chemically decompose a solid sample. The volatile products of the decomposition reaction may be trapped and weighed to provide quantitative information. Alternatively, the residue remaining when decomposition is complete may be weighed. In thermogravimetry, which is one form of volatilization gravimetry, the sample s mass is continuously monitored while the applied temperature is slowly increased. [Pg.255]

Determine the identities of the volatilization products and the solid residue at each step of the thermal decomposition. [Pg.256]

This loss is consistent with CO as the volatile product, leaving a residue of CaCOa. [Pg.257]

In volatilization gravimetry, thermal or chemical energy is used to decompose the sample containing the analyte. The mass of residue remaining after decomposition, the mass of volatile products collected with a suitable trap, or a change in mass due to the loss of volatile material are all gravimetric measurements. [Pg.266]

Miscellaneous Atomization Methods A few elements may be atomized by a chemical reaction that produces a volatile product. Elements such as As, Se, Sb, Bi, Ge, Sn, Te, and Pb form volatile hydrides when reacted with NaBH4 in acid. An inert gas carries the volatile hydrides to either a flame or to a heated quartz observation tube situated in the optical path. Mercury is determined by the cold-vapor method in which it is reduced to elemental mercury with SnCb- The volatile Hg is carried by an inert gas to an unheated observation tube situated in the instrument s optical path. [Pg.415]

Air contaminants are emitted to the indoor air from a wide variety of activities and consumer products, some of which are summarized in Table 11. Most indoor activities produce some types of pollutants. When using volatile products or engaging in the activities Hsted, care should be exercised to minimize exposure through proper use of the product and by providing adequate ventilation. [Pg.382]

The original process of heating coal in rounded heaps, the hearth process, remained the principal method of coke production for over a century, although an improved oven in the form of a beehive was developed in the Durham-Newcastie area of England in about 1759 (2,26,28). These processes lacked the capabiHty to collect the volatile products, both Hquids and gases. It was not until the mid-nineteenth century, with the introduction of indirectiy heated slot ovens, that it became possible to collect the Hquid and gaseous products for further use. [Pg.63]

Thermal Cracking. In addition to the gases obtained by distillation of cmde petroleum, further highly volatile products result from the subsequent processing of naphtha and middle distillate to produce gasoline, as well as from hydrodesulfurization processes involving treatment of naphthas, distillates, and residual fuels (5,61), and from the coking or similar thermal treatment of vacuum gas oils and residual fuel oils (5). [Pg.74]

Volatile products may be removed by direct distillation or the soHd magnesium hahde may be removed by filtration, before solvent evaporation. If the final product is not water sensitive, water-washing of the final reaction product mixture usually removes the salts convenientiy. [Pg.394]

Vacuum Distillation. Vacuum distUlation evolved as the need arose to separate the less volatile products, such as lubricating oUs, from petroleum without subjecting these higher boiling materials to cracking conditions. The boiling point of the heaviest cut obtainable at atmospheric pressure (101.3 kPa = 760 mm Hg) is limited by the temperature (ca 350°C) at which the residue starts to decompose or crack. It is at this point that distUlation in a vacuum pipe stUl is initiated. [Pg.202]

Four columns are needed to produce the desired products. Considering the Sharp Distillation Sequencing heuristics, heuristic (/) does not apply, as there is more than one product in this mixture. Fatty acids are moderately corrosive, but none is particularly more so than the others, so heuristic (2) does not apply. The most volatile product, the caproic and capryflc mixture, is a small (10 mol %) fraction of the feed, so heuristic (3) does not apply. The least volatile product, the oleic—stearic acids, is 27% of the feed, but is not nearly as large as the capric—lauric acid product, so heuristic (4) does not apply. The spht between lauric and myristic acids is closest to equimolar (55 45) and is easy. Therefore, by heuristic (5) it should be performed first. The boiling point list implies that the distillate of the first column contains caproic, capryflc, capric, and lauric acids. This stream requires only one further separation, which by heuristic (/) is between the caproic—capryflc acids and capric—lauric acids. [Pg.445]

The most volatile product (myristic acid) is a small fraction of the feed, whereas the least volatile product (oleic—stearic acids) is most of the feed, and the palmitic—oleic acid split has a good relative volatility. The palmitic—oleic acid split therefore is selected by heuristic (4) for the third column. This would also be the separation suggested by heuristic (5). After splitting myristic and palmitic acid, the final distillation sequence is pictured in Figure 1. Detailed simulations of the separation flow sheet confirm that the capital cost of this design is about 7% less than the straightforward direct sequence. [Pg.445]

Anionic Polymerization of Cyclic Siloxanes. The anionic polymerization of cyclosiloxanes can be performed in the presence of a wide variety of strong bases such as hydroxides, alcoholates, or silanolates of alkaH metals (59,68). Commercially, the most important catalyst is potassium silanolate. The activity of the alkaH metal hydroxides increases in the foUowing sequence LiOH < NaOH < KOH < CsOH, which is also the order in which the degree of ionization of thein hydroxides increases (90). Another important class of catalysts is tetraalkyl ammonium, phosphonium hydroxides, and silanolates (91—93). These catalysts undergo thermal degradation when the polymer is heated above the temperature requited (typically >150°C) to decompose the catalyst, giving volatile products and the neutral, thermally stable polymer. [Pg.46]

Until 1960—1970, in countries where natural gas was not available, large amounts of coal were carbonized for the production of town gas, as well as a grade of coke which, although unsuitable for metallurgical use, was satisfactory as a domestic fuel in closed stoves. The early cast-iron and siUca horizontal retorts used at gasworks were replaced by continuous vertical retorts. These operated at flue temperatures of 1000—1100°C. The volatile products were rapidly swept from the retort by the introduction of steam at 10—20% by weight of the coal carbonized. [Pg.336]

Fite refining adjusts the sulfur and oxygen levels in the bhster copper and removes impurities as slag or volatile products. The fire-refined copper is sold for fabrication into end products, provided that the chemistry permits product specifications to be met. Some impurities, such as selenium and nickel, are not sufficiently removed by fire refining. If these impurities are detrimental to fabrication or end use, the copper must be electrorefined. Other impurities, such as gold, silver, selenium, and tellurium, are only recovered via electrorefining. Virtually all copper is electrorefined. [Pg.201]

If the solvent is removed without care a considerable amount of volatile product may be lost. [Pg.120]

Note 1. When loading volatile products such as gasoline, whose vapor concentration can be shown to rapidly exceed the upper flammable limit during tank filling, the velocity-diameter product may be increased to 0.50 mVs- This is consistent with API RP2003 [3]. Similarly, shorter wait periods of 1-2 min can be used. [Pg.130]


See other pages where Volatile products is mentioned: [Pg.210]    [Pg.304]    [Pg.2925]    [Pg.889]    [Pg.2]    [Pg.97]    [Pg.99]    [Pg.149]    [Pg.255]    [Pg.257]    [Pg.257]    [Pg.262]    [Pg.232]    [Pg.277]    [Pg.503]    [Pg.352]    [Pg.338]    [Pg.249]    [Pg.470]    [Pg.71]    [Pg.482]    [Pg.226]    [Pg.749]    [Pg.2374]    [Pg.3]    [Pg.377]   
See also in sourсe #XX -- [ Pg.255 , Pg.256 ]

See also in sourсe #XX -- [ Pg.238 ]

See also in sourсe #XX -- [ Pg.5 , Pg.12 , Pg.91 , Pg.116 , Pg.121 , Pg.163 , Pg.201 , Pg.223 , Pg.310 ]

See also in sourсe #XX -- [ Pg.650 ]




SEARCH



Case of Volatile Reaction Products

Cellulose volatile products, formation

Changing Relative Volatilities of Products

Core fission product volatilization

Core fission product volatilization, effect

Degradation volatile products

Ester volatiles, production

Fission product volatilization

Flavor volatile Maillard reaction products

Hydrogen production volatile fatty acids

Innovative Product with High Demand Volatility

Key parameters affecting net volatile iodine production

Large scale volatile production

Metabolism volatile products

Pyrolysis products volatile molecules

Pyrolysis volatile decomposition products

Pyrolysis volatile decomposition, products from

Pyrolysis volatile products

Pyrolysis volatile products from

Scale volatile production

Starch volatile products

Temperature volatiles production

Volatile compound production

Volatile compound production suspension cell cultures

Volatile cure products

Volatile fatty acids production

Volatile fission product removal

Volatile fission products

Volatile oxidation products

Volatile production

Volatile production

Volatile production economics

Volatile production, temperature dependence

Volatile products analysis

Volatile products condensation

Volatile products from browning

Volatile products from thermal

Volatile products from thermal analyzers

Volatile products, radiolysis

Volatile reaction products

Volatile reaction products, loss

Volatile thermal decomposition products

Volatility product

© 2024 chempedia.info