Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroperoxides secondary oxidation products

A number of methods are available for following the oxidative behaviour of food samples. The consumption of oxygen and the ESR detection of radicals, either directly or indirectly by spin trapping, can be used to follow the initial steps during oxidation (Andersen and Skibsted, 2002). The formation of primary oxidation products, such as hydroperoxides and conjugated dienes, and secondary oxidation products (carbohydrides, carbonyl compounds and acids) in the case of lipid oxidation, can be quantified by several standard chemical and physical analytical methods (Armstrong, 1998 Horwitz, 2000). [Pg.331]

According to the Cd 18-90 AOCS ° official method, the ANV is 100 times the optical density measured in a 1 cm cell, at 350 nm, of a solution containing 1.00 g of oil in 100 ml of the test solution. The measured absorbance is due to Schiff bases (167) formed when p-anisidine (166) undergoes condensation reaction with carbonyl compounds, according to equation 55. The carbonyl compounds are secondary oxidation products of lipids, such as a, S-unsaturated aldehydes and ketones derived from the hydroperoxides (see Scheme 1 in Section n.A.2.c), and their presence points to advanced oxidation of the oil. [Pg.666]

Oxidation indices, 656-72 peroxide determination, 762-3 peroxide value, 656, 657-64 colorimetry, 658-61 definition, 657 direct titration, 657 electrochemical methods, 663-4 IR spectrophotometry, 661-3 NIR spectrophotometry, 663 UV-visible spectrophotometry, 658-61 secondary oxidation products, 656, 665-72 tests for stability on storage, 664-5, 672 thermal analysis, 672 Oxidative amperometiy, hydroperoxide determination, 686 Oxidative cleavage alkenes, 1094-5 double bonds, 525-7 Oxidative couphng, hydrogen peroxide determination, 630, 635 Oxidative damage... [Pg.1477]

The primary products from autoxidation are hydroperoxides, which are often simply referred to as peroxides. Peroxides are odorless and colorless, but are labile species that can undergo both enzymatic and nonenzymatic degradation to produce a complex array of secondary products such as aliphatic aldehydes, alcohols, ketones, and hydrocarbons. Many of these secondary oxidation products are odiferous and impart detrimental sensory attributes to the food product in question. Being able to monitor and semi-quantitate the development of peroxides by objective means (e.g., PV determination) over time is important for food scientists who want to characterize the quality of an oil or a lipid-containing food product, even though the peroxides themselves are not directly related to the actual sensory quality of the product tested. [Pg.523]

It should be noted that both linoleic and a-linolenic acids form hydroperoxides that absorb UV radiation at 233 nm (i.e., the same wavelength as that of CDs). Furthermore, CDs are formed upon decomposition of hydroperoxides from a-linolenic acid, absorbing at 233 nm, whereas secondary oxidation products, particularly ethylenic diketones and a-unsatu-rated ketones, show a maximum absorbance at -268 nm. Carotenoid-containing oils may interfere in the assay by giving higher than expected absorbance values at 233 nm, due to the presence of double bonds in the conjugated structures of carotenoids. [Pg.526]

Lipids are susceptible to oxidation and, as such, require analytical protocols to measure their quality. As described in vnitd2.i, autoxi-dation is one of the chief processes by which lipids degrade. The primary products from this reaction are hydroperoxides. These odorless and colorless transient species break down by various means to secondary products, which are generally odoriferous by nature. Being able to measure secondary oxidation products by simple spectrophotometric means is important for the food scientist so that he or she is able to characterize the extent of lipid oxidation. However, the researcher should be cautioned that one assay (e.g., TBA test) does not provide all the answers. To get a better picture of the story, both primary and secondary products of lipid oxidation should be assessed simultaneously by the different methods available (unitdu). [Pg.555]

The peaks in the chromatograms most likely represent not only primary but also secondary oxidation products of TAGs. According to Neff and co-workers (140), the minor peaks eluting before the main peaks of standard compounds illustrate secondary oxidation products, such as hy-droperoxy epidioxides or bis- or tri.v-hydroperoxides. [Pg.246]

The hydroperoxides formed in the propagation part of the reaction are the primary oxidation products. The hydroperoxide mechanism of autoxidation was first proposed by Farmer (1946). These oxidation products are generally unstable and decompose into the secondary oxidation products, which include a variety of compounds, including... [Pg.64]

As oxidation normally proceeds very slowly at the initial stage, the time to reach a sudden increase in oxidation rate is referred to as the induction period (6). Lipid hydroperoxides have been identified as primary products of autoxidation decomposition of hydroperoxides yields aldehydes, ketones, alcohols, hydrocarbons, volatile organic acids, and epoxy compounds, known as secondary oxidation products. These compounds, together with free radicals, constitute the bases for measurement of oxidative deterioration of food lipids. This chapter aims to explore current methods for measuring lipid oxidation in food lipids. [Pg.400]

The primary oxidation products (hydroperoxides) are unstable and susceptible to decomposistion. A complex mixture of volatile, nonvolatile, and polymeric secondary oxidation products is formed through decomposition reactions, providing various indices of lipid oxidation (5). Secondary oxidation products include aldehydes, ketones, alcohols, hydrocarbons, volatile organic acids, and epoxy compounds, among others. Methods for assessing lipid oxidation based on their formation are discussed in this section. [Pg.408]

Carbonyl compounds in oxidized fats and oils are the secondary oxidation products that originate from decomposition of hydroperoxides. They usually have low threshold values and hence are responsible for off-flavor development in oxidized oils. Therefore, content of carbonyl compounds corresponds with sensory data. [Pg.611]

Undeodorized oil preparation—The first process control requirement is to assure that the processing of the oil prior to deodorization has been preformed properly. Preparation of the oil before deodorization has a significant effect on the product after deodorization. For example, deodorization will remove the hydroperoxides from abused oils, but the secondary oxidation products formed will accelerate the rate of oxidation during storage to compromise the flavor and odor. With proper process control, the abused oil would have been bleached prior to deodorization to remove the aldehydes and ketones that make up the secondary oxidation products. Two other deleterious impurities that deodorization will not remove are soap and phosphatides, which must be eliminated in the up-stream processes. [Pg.875]

Analysis of the Decomposition Products of Hydroperoxides. Some authors have monitored formation of some of the decomposition products of the lipid hydroperoxides. Direct spectrophotometric measurements of the formation of oxo-octadecadienoic acids at 280 nm are possible , as are measurements of secondary oxidation products like a-diketones and unsaturated ketones at 268 nm. The formation of various aldehyde products of lipid peroxide decomposition can be monitored by reacting them with 2,4-dinitrophenylhydrazine and, after HPLC separation, measuring at 360-380 mn the DNPH derivatives formed , althongh the sensitivity of this particular technique makes it very susceptible to interference. [Pg.854]

Carbonyl compounds in oxidized lipids are the secondary oxidation products resulting from the decomposition of the hydroperoxides. They can be quantified by the reaction with 2,4-dinitrophenylhydrazine and the resulting colored hydrazones are measured spectrophotometrically at 430-460 nm. The carbonyl value is directly related to sensory evaluation, because many of the carbonyl molecules are those responsible for off-flavor in oxidized oil. The anisidine value is a measure of carbonyl compounds that have medium molecular weight and are less volatile (Frankel 1998). It can be used to discover something about the prior oxidation or processing history of an oil. [Pg.46]

AOCS has a recommended practice (Cg 3-91) for assessing oil quality and stability (AOCS, 2005) for measuring primary and secondary oxidation products either directly or indirectly. For example, peroxide value analysis (AOCS method Cd 8-53) (AOCS, 2005) determines the hydroperoxide content and is a good analysis of primary oxidation products. To determine secondary oxidation products, the procedure recommends p-anisidine value (AOCS Method Cd 18-90, 2005) volatile comlb by gas chromatography (AOCS Method Cg 4-94, 2005) and flavor evaluation. (AOCS Method Cg 2-83, 2005). The anisidine value method determines the amounts of aldehydes, principally 2-alkenals and 2, 4-dienals, in oils. The volatile compound analysis method measures secondary oxidation products formed during the decomposition of fatty acids. These comlb can be primarily responsible for the flavors in oils. The... [Pg.500]

Many methods have been developed to access the extent of oxidative deterioration, which are related to the measurement of the concentration of primary or secondary oxidation products or of both. The most commonly used are peroxide value (PV) that measures volumetrically the concentration of hydroperoxides, anisidine value (AV), spectrophotometric measurement in the UV region and gas chromatographic (GC) analysis for volatile compounds. Vibrational spectroscopy, because of its high content in molecular structure information, has also been considered to be useful for the fast measurement of lipid oxidation. In contrast to the time consuming chromatographic methods, modem techniques of IR and Raman spectrometry are rapid and do not require any sample preparation steps prior to analysis. These techniques have been used to monitor oil oxidation under moderate and accelerated conditions and the major band changes have been interpreted. ... [Pg.150]

In the propagation sequence (Reactions 12.3 and 12.4), given an adequate supply of oxygen, the reaction between alkyl radicals and molecular oxygen is very fast and peroxyl radicals are formed (ROO ). These react with another fatty acid molecule producing hydroperoxides (ROOH) and new free radicals that contribute to the chain by reacting with another oxygen molecule. Hydroperoxide molecules can decompose in the presence of metals to produce alkoxyl radicals (RO ), which cleave into a complex mixture of aldehydes and other products, i.e., secondary oxidation products."... [Pg.385]

A variety of compounds such as hydrocarbons, alcohols, furans, aldehydes, ketones, and acid compounds are formed as secondary oxidation products and are responsible for the undesirable flavors and odors associated with rancid fat. The off-flavor properties of these compounds depend on the structure, concentration, threshold values, and the tested system. Aliphatic aldehydes are the most important volatile breakdown products because they are major contributors to unpleasant odors and flavors in food products. The peroxidation pathway from linoleic acid to various volatiles is determined in several researchs, - by using various techniques (Gas chromatography mass spectrometry, GC-MS, and electron spin resonance spectroscopy, ESR), identified the volatile aldehydes that are produced during the oxidation of sunflower oil. In both cases, hexanal was the major aldehyde product of hydroperoxide decomposition, whereas pentanal, 2-heptenal, 2-octenal, 2-nonenal, 2,4-nonadienal, and 2,4-decadienal were also identified. [Pg.387]

During lipid oxidation, the primary oxidation products that are formed by the autoxidation of unsaturated lipids are hydroperoxides, which have little or no direct impact on the sensory properties of foods. However, hydroperoxides are degraded to produce additional radicals which further accelerates the oxidation process and produce secondary oxidation products such as aldehydes, ketones, acids and alcohols, of which some are volatiles with very low sensory thresholds and have potentially significant impact on the sensory properties namely odor and flavor [2, 3]. Sensory analysis of food samples are performed by a panel of semi to highly trained personnel under specific quarantined conditions. Any chemical method used to determine lipid oxidation in food must be closely correlated with a sensory panel because the human nose is the most appropriate detector to monitor the odorants resulting from oxidative and non-oxidative degradation processes. The results obtained from sensory analyses provide the closest approximation to the consumers approach. Sensory analyses of smell and taste has been developed in many studies of edible fats and oils and for fatty food quality estimation [1, 4, 5]. [Pg.162]

The first intermediates in the chain reaction leading to volatile secondary oxidation products are hydroperoxides. They react further in a very complex way to give a diverse spectrum of short-chain secondary reaction products pertinent to oxidative rancidity. Grosch (1987) isolated... [Pg.68]

Sevanian et al. (1994) applied GLC and LC/TS/MS for the analysis of plasma cholesterol-7-hydroperoxides and 7-ketocholesterol. Analysis of human and rabbit plasma identified the commonly occurring oxidation products, yet dramatic increases in 7-ketocholesterol and cholesterol-5p, 6P-epoxide were observed. The study failed to reveal the presence of choles-terol-7-hydroperoxides, which were either too unstable for isolation, metabolized or further decomposed. The principal ions of cholesterol oxides monitored by LC/TS/MS were m/z 438 (cholestane triol) m/z 401 (cholesterol-7-hydroperoxide) m/z 401 (7-ketocholesterol) m/z 367 (7a-hydroxycholesterol) m/z 399 (cholesta-3,5-dien-7-one) and m/z 385 (choles-terol-5a,6a-epoxide). The major ions were supported by minor ions consistent with the steroid structure. Kamido et al. (1992a, b) synthesized the cholesteryl 5-oxovaleroyl and 9-oxononanoyl esters as stable secondary oxidation products of cholesteryl arachidonate and linoleate, respectively. These compounds were identified as the 3,5-dinitrophenylhydrazone (DNPH) derivatives by reversed-phase LC/NICI/MS. These standards were used to identify cholesteryl and 7-ketocholesteryl 5-oxovaleroyl and 9-oxononanoyl esters as major components of the cholesteryl ester core aldehydes generated by copper-catalysed peroxidation of low-density lipoprotein (LDL). In addition to 9-oxoalkanoate (major product), minor amounts of the 8, 9, 10, 11 and 12 oxo-alkanoates were also identified among the peroxidation products of cholesteryl linoleate. Peroxidation of cholesteryl arachidonate yielded the 4, 6, 7, 8, 9 and 10 oxo-alkanoates of cholesterol as minor products. The oxysterols resulting from the peroxidation of the steroid ring were mainly 7-keto, 7a-hydroxy and 7P-... [Pg.193]

Secondary Oxidation Products. This refers particularly to those degradation products of hydroperoxides which are significant because of their influence on flavour even at very low concentration. Three papers relate to volatile oxidation products from linoleate at temperatures between 70 and 250°C and attention is drawn to the... [Pg.234]

A large proportion of the volatiles identified in vegetable oils are derived from the cleavage reactions of the hydroperoxides of oleate, linoleate, and linolenate (Section D). A wide range of hydrocarbons (ethane, propane, pentane and hexane) appears to be formed in soybean oil oxidized to low peroxide values. A number of volatiles identified in vegetable oils that are not expected as primary cleavage products of monohydroperoxides include dialdehydes, ketones, ethyl esters, nonane, decane, undecane, 2-pentylfuran, lactone, benzene, benzaldehyde and acetophenone. Some of these volatiles may be derived from secondary oxidation products, but the origin of many volatiles still remains obscure. However, studies of volatile decomposition products should be interpreted with caution, because the conditions used for isolation and identification may cause artifacts, especially when fats are subjected to elevated temperatures. [Pg.95]


See other pages where Hydroperoxides secondary oxidation products is mentioned: [Pg.120]    [Pg.120]    [Pg.134]    [Pg.656]    [Pg.1471]    [Pg.656]    [Pg.52]    [Pg.64]    [Pg.411]    [Pg.604]    [Pg.2689]    [Pg.4]    [Pg.127]    [Pg.25]    [Pg.10]    [Pg.402]    [Pg.221]    [Pg.221]    [Pg.130]    [Pg.351]    [Pg.151]    [Pg.198]    [Pg.205]    [Pg.67]    [Pg.108]   
See also in sourсe #XX -- [ Pg.665 ]




SEARCH



Hydroperoxides oxidation

Secondary hydroperoxides

Secondary oxidants

Secondary oxidation

Secondary oxidation products

Secondary products

© 2024 chempedia.info