Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rates oxidation

Examination of oven-aged samples has demonstrated that substantial degradation is limited to the outer surface (34), ie, the oxidation process is diffusion limited. Consistent with this conclusion is the observation that oxidation rates are dependent on sample thickness (32). Impact property measurements by high speed puncture tests have shown that the critical thickness of the degraded layer at which surface fracture changes from ductile to brittle is about 0.2 mm. Removal of the degraded layer restores ductiHty (34). Effects of embrittled surface thickness on impact have been studied using ABS coated with styrene—acrylonitrile copolymer (35). [Pg.203]

Eig. 2. Efficiency to a primary intermediate as % of maximum (zero conversion) efficiency x axis is feed conversion. Parameters are oxidation rate-constant ratios ( 2 / i) for primary intermediate vs feed and reactor type A, plug-flow or batch B, back-mixed. [Pg.337]

The similarity of oxidation rates of different hydrocarbons in the higher temperature regions is probably related to the predominance of alkyl radical cracking reactions under these conditions (reaction 28). The products of such reactions would be similar for most common hydrocarbons (96). [Pg.340]

A typical oxidation is conducted at 700°C (113). Methyl radicals generated on the surface are effectively injected into the vapor space before further reaction occurs (114). Under these conditions, methyl radicals are not very reactive with oxygen and tend to dimerize. Ethane and its oxidation product ethylene can be produced in good efficiencies but maximum yield is limited to ca 20%. This limitation is imposed by the susceptibiUty of the intermediates to further oxidation (see Figs. 2 and 3). A conservative estimate of the lower limit of the oxidation rate constant ratio for ethane and ethylene with respect to methane is one, and the ratio for methanol may be at least 20 (115). [Pg.341]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Water as an impurity accelerates the oxidation rate. Figure 4 compares growth curves for Si02 under dry and steam conditions. Halogens can also be introduced to the oxidation process, thereby reducing sodium ion contamination. This improves dielectric breakdown strength, and reduces interface trap density (15). [Pg.347]

In neutral and alkaline environments, the magnesium hydroxide product can form a surface film which offers considerable protection to the pure metal or its common alloys. Electron diffraction studies of the film formed ia humid air iadicate that it is amorphous, with the oxidation rate reported to be less than 0.01 /rni/yr. If the humidity level is sufficiently high, so that condensation occurs on the surface of the sample, the amorphous film is found to contain at least some crystalline magnesium hydroxide (bmcite). The crystalline magnesium hydroxide is also protective ia deionized water at room temperature. The aeration of the water has Httie or no measurable effect on the corrosion resistance. However, as the water temperature is iacreased to 100°C, the protective capacity of the film begias to erode, particularly ia the presence of certain cathodic contaminants ia either the metal or the water (121,122). [Pg.332]

High Temperature Corrosion. The rate of oxidation of magnesium adoys increases with time and temperature. Additions of berydium, cerium [7440-45-17, lanthanum [7439-91-0] or yttrium as adoying elements reduce the oxidation rate at elevated temperatures. Sulfur dioxide, ammonium fluoroborate [13826-83-0] as wed as sulfur hexafluoride inhibit oxidation at elevated temperatures. [Pg.334]

Under extreme pH, ie, conditions such as very high acidity, an increase in oxidation rate can result, presumably through the formation of permanganic acid, HMnO. ... [Pg.522]

Sulfur. Low sulfur stocks and EV sulfur-accelerated systems have better aging resistance. Normally, the oxidation rate increases with the amount of sulfur used in the cure. The increased rate may be due to activation of adjacent C—H groups by high levels of combined sulfur. Saturated sulfides are more inert to oxidation than aHyUc sulfides. Polysulfidic cross-links impart excessive hardening of SBR as compared to more stable monosulfidic cross-links. [Pg.246]

For the manufacture of silicon semiconductor devices, oxide thicknesses of from <10 to >1000 nm are required on sHces of single-crystal silicon. These oxide layers are formed at elevated temperatures, generally at about 1000°C, in an atmosphere of either oxygen or steam. Usually the oxidation is at atmospheric pressure, but sometimes, to speed the oxidation rate, pressures of several atmospheres are used. Oxidation consumes a silicon thickness equal to about 0.4 the thickness of the oxide produced (grown). The thickness of the oxide, V (4) is approximately given by equation 1 ... [Pg.525]

Waste streams that are treated by wet air oxidation generally are those having dissolved or suspended organic concentrations from 500 to 50,000 mg/L. Below 500 mg/L, oxidation rates are too slow and above 50,000 mg/L, incineration may be more feasible. [Pg.166]

Autoca.ta.Iysis. The oxidation rate at the start of aging is usually low and increases with time. Radicals, produced by the homolytic decomposition of hydroperoxides and peroxides (eqs. 2—4) accumulated during the propagation and termination steps, initiate new oxidative chain reactions, thereby increasing the oxidation rate. [Pg.223]

Termination. The conversion of peroxy and alkyl radicals to nonradical species terminates the propagation reactions, thus decreasing the kinetic chain length. Termination reactions (eqs. 7 and 8) are significant when the oxygen concentration is very low, as in polymers with thick cross-sections where the oxidation rate is controlled by the diffusion of oxygen, or in a closed extmder. The combination of alkyl radicals (eq. 7) leads to cross-linking, which causes an undesirable increase in melt viscosity. [Pg.223]

At ambient temperatures beryUium is quite resistant to oxidation highly poHshed surfaces retain the brilliance for years. At 700°C oxidation becomes noticeable in the form of interference films, but is slow enough to permit the working of bare beryUium in air at 780°C. Above 850°C oxidation is rapid to a loosely adherent white oxide. The oxidation rate at 700°C is paraboHc but may become linear at this temperature after 24—48 hours of exposure. In the presence of moisture this breakaway oxidation occurs more rapidly and more extensively. BeryUium oxide [1304-56-9] BeO, forms rather than beryUium nitride [1304-54-7] Be2N2, but in the absence of oxygen, nitrogen attacks beryUium above 900°C. [Pg.66]

The oxidation rate of granular silicon carbide in dry oxygen at 900—1600°C was studied and an equation for the effect of particle size was derived (61). [Pg.466]

Cobalt cannot be classified as an oxidation-resistant metal. Scaling and oxidation rates of unalloyed cobalt in air are 25 times those of nickel. The oxidation resistance of Co has been compared with that of Zr, Ti, Fe, and Be. Cobalt in the hexagonal form (cold-worked specimens) oxidizes more rapidly than in the cubic form (annealed specimens) (3). [Pg.371]

The stmcture of residual char particles after devolatilization depends on the nature of the coal and the pyrolysis conditions such as heating rate, peak temperature, soak time at the peak temperature, gaseous environment, and the pressure of the system (72). The oxidation rate of the chat is primarily influenced by the physical and chemical nature of the chat, the rate of diffusion and the nature of the reactant and product gases, and the temperature and pressure of the operating system. The physical and chemical characteristics that influence the rate of oxidation ate chemical stmctural variations, such as the... [Pg.521]

Elevated pressures are required to keep water in the Hquid state. Liquid water cataly2es oxidation so that reactions proceed at relatively lower temperatures than would be required if the same materials were oxidi2ed in open flame combustion. At the same time, water moderates oxidation rates by providing a medium for heat transfer and removing excess heat by evaporation. [Pg.383]

In a mixture of / -hexane and benzene (29), the deep catalytic oxidation rates of benzene and / -hexane in the binary mixture are lower than when these compounds are singly present. The kinetics of the individual compounds can be adequately represented by the Mars-VanKrevelen mechanism. This model needs refinements to predict the kinetics for the mixture. [Pg.505]

Another useful element in imparting oxidation resistance to steel is silicon (complementing the effects of chromium). In the lower-chromium ranges, silicon in the amounts of 0.75 to 2 percent is more effective than chromium on a weight-percentage basis. The influence of 1 percent silicon in improving the oxidation rate of steels with varying chromium contents is shown in Fig. 28-26. [Pg.2470]

Molybdenum High melting point less dense than tungsten or tantalum moderately ductile at room temperature Extremely high oxidation rate (volatile oxide)... [Pg.2476]


See other pages where Rates oxidation is mentioned: [Pg.39]    [Pg.942]    [Pg.952]    [Pg.2729]    [Pg.2806]    [Pg.122]    [Pg.115]    [Pg.125]    [Pg.473]    [Pg.52]    [Pg.276]    [Pg.477]    [Pg.119]    [Pg.105]    [Pg.46]    [Pg.216]    [Pg.525]    [Pg.529]    [Pg.370]    [Pg.228]    [Pg.410]    [Pg.163]    [Pg.511]    [Pg.113]    [Pg.437]    [Pg.146]    [Pg.349]    [Pg.2431]   
See also in sourсe #XX -- [ Pg.212 ]

See also in sourсe #XX -- [ Pg.129 ]

See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.158 , Pg.161 ]

See also in sourсe #XX -- [ Pg.2 , Pg.226 ]

See also in sourсe #XX -- [ Pg.213 ]




SEARCH



© 2024 chempedia.info