Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear fuel applications

Apart from g Pu, which is a nuclear fuel and explosive, the transuranium elements have in the past been produced mainly for research purposes. A number of specialized applications, however, have led to more widespread uses. I Pu (produced by neutron bombardment of I Np to form 93 Np which decays by jS-emission to 94Pu) is a compact heat source (0.56 Wg as it decays by a-emission) which, in conjunction with PbTe thermoelectric elements, for instance, provides a stable and totally reliable source of electricity with no moving parts. It has been... [Pg.1262]

Ceramics, including concrete, are useful especially in structures, reactors, as refractories in combustion of fuels, and as nuclear fuel. Porcelain insulators on transmission lines are an example of a specialized application of ceramics. [Pg.770]

Uranium is used as the primai-y source of nuclear energy in a nuclear reactor, although one-third to one-half of the power will be produced from plutonium before the power plant is refueled. Plutonium is created during the uranium fission cycle, and after being created will also fission, contributing heat to make steam in the nuclear power plant. These two nuclear fuels are discussed separately in order to explore their similarities and differences. Mixed oxide fuel, a combination of uranium and recovered plutonium, also has limited application in nuclear fuel, and will be briefly discussed. [Pg.866]

Reported plant applications of a.c. impedance and electrochemical noise are rare, but include stainless steels in terephthalic acid (TA) plant oxidation liquors , nuclear fuel reprocessing , and fluegas desulphurisation (FGD) scrubber systems . [Pg.37]

The possible application of aqueous plutonium photochemistry to nuclear fuel reprocessing probably has been the best-received justification for investigating this subject. The necessary controls of and changes in Pu oxidation states could possibly be improved by plutonium photochemical reactions that were comparable to the uranyl photochemistry. [Pg.264]

Fluidized-bed CVD was developed in the late 1950s for a specific application the coating of nuclear-fuel particles for high temperature gas-cooled reactors. PI The particles are uranium-thorium carbide coated with pyrolytic carbon and silicon carbide for the purpose of containing the products of nuclear fission. The carbon is obtained from the decomposition of propane (C3H8) or propylene... [Pg.133]

Before leaving ionic liquids it is worth mentioning their potential value in separation processes. Organic solvents are frequently used in multiphase extraction processes and pose the same problems in terms of VOC containment and recovery as they do in syntheses, hence ionic liquids could offer a more benign alternative. Interesting applications along this line which have been studied include separation of spent nuclear fuel from other nuclear waste and extraction of the antibiotic erythromycin-A. [Pg.161]

Similar demands for reference materials also arise in connection with the monitoring of radioactivity in and around nuclear installations (nuclear power plants, nuclear fuel and reprocessing plants, and nuclear waste facilities). These, in fact, are now the main applications of radionuclide reference materials. [Pg.144]

Nuclear fuel, thorium in, 24 758-759 Nuclear fuel applications, thorium in,... [Pg.637]

CSC atomization was developed by AEA Harwell Laboratories in the UK in the early 1970 s. Initially, the CSC process was used for the atomization of refractory and oxide materials such as alumina, plutonium oxides, and uranium monocarbide in nuclear fuel applications. Since it is well-suited to the atomization of reactive metals/alloys or those subject to segregation, the CSC process has been applied to a variety of materials such as iron, cobalt, nickel, and titanium alloys and many refractory metals. The process also has potential to scale up to a continuous process. [Pg.106]

Today s rapidly increasing activities on hydrogen focus mostly on vehicle applications and less on stationary applications. For fuel cells, stationary applications are also relevant, but natural gas will be the dominant fuel here. The dominance of the transport sector is also reflected in the hydrogen roadmaps developed, among others, in the EU, the USA, Japan, or at an international level. Whereas in the beginning, onsite or decentralised production options based on fossil fuels or electricity are seen as the major option for hydrogen production, later on central production options will dominate the market. Here, several options could play a role, from coal, with carbon capture and sequestration, through natural gas and renewables (wind, biomass) to nuclear. A C02-free or lean vision can be identified in every roadmap. The cost... [Pg.267]

Table 2.1 lists specific radionuclides that may be present in nuclear fuel rods or industrial sources used to construct a dirty bomb. It also lists the radiological half-lives of each radionuclide, whether they are present in fresh or spent fuel rods, and their potential industrial applications. Note that the actual suites of isotopes for given fuel rods will vary depending on the origin and composition of the original fuel mixture. The uranium and plutonium isotopes found in fuel rods may also be found... [Pg.64]

Another area where titration calorimetry has found intensive application, and where the importance of heat flow versus isoperibol calorimetry has been growing, is the energetics of metal-ligand complexation. Morss, Nash, and Ensor [225], for example, used potenciometric titrations and heat flow isothermal titration calorimetry to study the complexation of UO "1" and trivalent lanthanide cations by tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THFTCA), in aqueous solution. Their general goal was to investigate the potential application of THFTCA for actinide and lanthanide separation, and nuclear fuels processing. The obtained results (table 11.1) indicated that the 1 1 complexes formed in the reaction (M = La, Nd, Eu, Dy, andTm)... [Pg.169]

The second part deals with applications of solvent extraction in industry, and begins with a general chapter (Chapter 7) that involves both equipment, flowsheet development, economic factors, and environmental aspects. Chapter 8 is concerned with fundamental engineering concepts for multistage extraction. Chapter 9 describes contactor design. It is followed by the industrial extraction of organic and biochemical compounds for purification and pharmaceutical uses (Chapter 10), recovery of metals for industrial production (Chapter 11), applications in the nuclear fuel cycle (Chapter 12), and recycling or waste treatment (Chapter 14). Analytical applications are briefly summarized in Chapter 13. The last chapters, Chapters 15 and 16, describe some newer developments in which the principle of solvent extraction has or may come into use, and theoretical developments. [Pg.31]

The initial objective for reprocessing irradiated nuclear fuels [27,28] was to recover and purify Pu for military applications. However, with the... [Pg.519]

Schulz, W. Burger, L. L. Navratil, J. D. Eds. Science and Technology of Tributyl Phosphate, Vol. 3, Applications of Tributyl Phosphate in Nuclear Fuel Processing CRC Press Boca Raton, Florida, 1990. [Pg.554]

Misch metal, an alloy of cerium with other lanthanides is a pyrophoric substance and is used to make gas lighters and ignition devices. Some other applications of the metal or its alloys are in solid state devices rocket propellant compositions as getter in vacuum tubes and as a diluent for plutonium in nuclear fuel. [Pg.199]

Highly pure lanthanum oxide is used to make optical glass of high refractive index for camera lenses. It also is used to make glass fibers. The oxide also is used to improve thermal and electrical properties of barium and strontium titanates. Other applications are in glass polishes carbon arc electrodes fluorescent type phosphors and as a diluent for nuclear fuels. In such apph-cations, lanthinum oxide is usually combined with other rare earth oxides. [Pg.451]

RUO2X H2O in nitric acid solution. This process has potential application in nuclear fuel reprocessing [426]. [Pg.948]

Bruno, J., Casas, I., Cera, E. Duro, L. 1997. Development and application of a model for the long-term alteration of U02 spent nuclear fuel. Test of equilibrium and kinetic mass transfer models in the Cigar Lake ore deposit. Journal of Contaminant Hydrology, 26, 19-26. [Pg.527]

Different applications of mass spectrometry in the trace and ultratrace determination of long lived radionuclides in nuclear fuel, solid radioactive waste samples, radioactive solutions and... [Pg.423]

The counting techniques described in this paper are also readily applicable to studies of "hot radioactive waste (z.e.j radioactive waste from reprocessed nuclear fuel). With this type of material, the cesium can be analyzed as 30-y (662-keV y), the RE as 13-y Eu (964-keV and 1408-keV y), strontium as 28-y Sr (after chemical separation and beta counting), and the actinides by group separation and alpha counting. [Pg.124]

Pyrolytic graphite was first produced in the late 1800s for lamp filaments. Today, it is produced in massive shapes, used for missile components, rocket nozzles, and aircraft brakes for advanced high performance aircraft. Pyrolytic graphite coated on surfaces or infiltrated into porous materials is also used in other applications, such as nuclear fuel particles, prosthetic devices, and high temperature thermal insulators. [Pg.527]

Macaskie, L. E. (1991)- The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. CriticalReviews in Biotechnology, 11,41-112. [Pg.336]


See other pages where Nuclear fuel applications is mentioned: [Pg.507]    [Pg.74]    [Pg.870]    [Pg.785]    [Pg.230]    [Pg.653]    [Pg.273]    [Pg.747]    [Pg.826]    [Pg.57]    [Pg.225]    [Pg.765]    [Pg.225]    [Pg.128]    [Pg.636]    [Pg.928]    [Pg.956]    [Pg.697]    [Pg.515]    [Pg.418]    [Pg.242]    [Pg.363]    [Pg.245]    [Pg.416]    [Pg.59]    [Pg.1618]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Applications nuclear fuel reprocessing

Fuel applications

Nuclear fuel industry applications

© 2024 chempedia.info