Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical separations

Commercially, xylene is obtained by the catalytic reforming of naphthenes in the presence of hydrogen see toluene) or was formerly obtained from coal tar. The material so-produced is suitable for use as a solvent or gasoline ingredient, these uses accounting for a large part of xylene consumption. If xylene is required as a chemical, separation into the iso-... [Pg.429]

The Soviet scientists have performed experiments aimed at chemical identification, and have attempted to show that the 0.3-s activity is more volatile than that of the relatively nonvolatile actinide trichlorides. This experiment does not fulfill the test of chemically separating the new element from all others, but it provides important evidence for evaluation. [Pg.158]

The targets were then removed for chemical separation of the einsteinium from californium. [Pg.210]

Other types of reactions can be used to chemically separate an analyte and interferent, including precipitation, electrodeposition, and ion exchange. Two important examples of the application of precipitation are the... [Pg.210]

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

Seaweeds. The eadiest successful manufacture of iodine started in 1817 using certain varieties of seaweeds. The seaweed was dried, burned, and the ash lixiviated to obtain iodine and potassium and sodium salts. The first process used was known as the kelp, or native, process. The name kelp, initially apphed to the ash of the seaweed, has been extended to include the seaweed itself. About 20 t of fresh seaweed was used to produce 5 t of air-dried product containing a mean of 0.38 wt % iodine in the form of iodides of alkah metals. The ash obtained after burning the dried seaweed contains about 1.5 wt % iodine. Chemical separation of the iodine was performed by lixiviation of the burned kelp, followed by soHd-Hquid separation and water evaporation. After separating sodium and potassium chloride, and sodium carbonate, the mother Hquor containing iodine as iodide was treated with sulfuric acid and manganese dioxide to oxidize the iodide to free iodine, which was sublimed and condensed in earthenware pipes (57). [Pg.361]

Chemical Separation. A reprocessing facility typically utilizes multiple extraction/reextraction (stripping) cycles for the recovery and purification of uranium and plutonium. For example, a co-decontamination and partitioning cycle is followed by one or more cycles of uranium and plutonium purification. The basic process is illustrated in Figure 3. [Pg.204]

Chemistry. Chemical separation is achieved by countercurrent Hquid— Hquid extraction and involves the mass transfer of solutes between an aqueous phase and an immiscible organic phase. In the PUREX process, the organic phase is typically a mixture of 30% by volume tri- -butyl phosphate (solvent) and a normal paraffin hydrocarbon (diluent). The latter is typically dodecane or a high grade kerosene (20). A number of other solvent or diluent systems have been investigated, but none has proved to be a substantial improvement (21). [Pg.204]

One feature of reprocessing plants which poses potential risks of a different nature from those ia a power plant is the need to handle highly radioactive and fissionable material ia Hquid form. This is necessary to carry out the chemical separations process. The Hquid materials and the equipment with which it comes ia contact need to be surrounded by 1.5—1.8-m thick high density concrete shielding and enclosures to protect the workers both from direct radiation exposure and from inhalation of airborne radioisotopes. Rigid controls must also be provided to assure that an iaadvertent criticahty does not occur. [Pg.241]

Biomolecule Separations. Advances in chemical separation techniques such as capillary zone electrophoresis (cze) and sedimentation field flow fractionation (sfff) allow for the isolation of nanogram quantities of amino acids and proteins, as weU as the characterization of large biomolecules (63—68) (see Biopolymers, analytical techniques). The two aforementioned techniques, as weU as chromatography and centrifugation, ate all based upon the differential migration of materials. Trends in the area of separations are toward the manipulation of smaller sample volumes, more rapid purification and analysis of materials, higher resolution of complex mixtures, milder conditions, and higher recovery (69). [Pg.396]

Eor products having relatively low specific activity, such as some compounds labeled with and which are synthesized on the scale of several millimoles, classical organic chemical separation methods may be utilized, including extraction, precipitation, and crystallization. Eor separation of complex mixtures and for products having high specific activity, such as those labeled with tritium, etc, chromatographic methods utilizing paper, thin... [Pg.438]

The same chemical separation research was done on thorium ores, leading to the discovery of a completely different set of radioactivities. Although the chemists made fundamental distinctions among the radioactivities based on chemical properties, it was often simpler to distinguish the radiation by the rate at which the radioactivity decayed. For uranium and thorium the level of radioactivity was independent of time. For most of the radioactivities separated from these elements, however, the activity showed an observable decrease with time and it was found that the rate of decrease was characteristic of each radioactive species. Each species had a unique half-life, ie, the time during which the activity was reduced to half of its initial value. [Pg.443]

Fleece-Back Sheet. A fleece-back sheet is a nonreinforced polymeric membrane that has had a nonwoven mat made of polyester, weighing 101.7—203.4 g/m, laminated to the back of the sheet. The prime use of the fleece-back sheet is in the fully adhered roofing systems. The fleece provides the chemical separator, which eliminates the need for an adhesive that is compatible with the specific membrane or a compatible substrate. [Pg.213]

Instrumental Quantitative Analysis. Methods such as x-ray spectroscopy, oaes, and naa do not necessarily require pretreatment of samples to soluble forms. Only reUable and verified standards are needed. Other instmmental methods that can be used to determine a wide range of chromium concentrations are atomic absorption spectroscopy (aas), flame photometry, icap-aes, and direct current plasma—atomic emission spectroscopy (dcp-aes). These methods caimot distinguish the oxidation states of chromium, and speciation at trace levels usually requires a previous wet-chemical separation. However, the instmmental methods are preferred over (3)-diphenylcarbazide for trace chromium concentrations, because of the difficulty of oxidizing very small quantities of Cr(III). [Pg.141]

Wastewater treatment is directed toward removal of pollutants with the least effort. Suspended sohds are removed by either physical or chemical separation techniques and handled as concentrated solids. [Pg.2214]

C.E. Meloan, Chemical Separations, Principles, Techniques and Experiments, J. Wiley Sons, New York, 2000, ISBN 0471351970. [Pg.50]

This section describes the major industrial processes within the petroleum refining industry, ineluding the materials and equipment used, and the processes employed. The section is necessary for an understanding of the interrelationships between the industrial processes, the types of air emissions, and control and pollution prevention approaehes. Deseriptions of eommonly used production processes, assoeiated raw materials, by-produets produeed are first deseribed. Petroleum refining is the physieal, thermal, and chemical separation of erude oil into its major distillation fraetions, which are then further proeessed through a series of separation and eonversion steps into finished petroleum produets. The primary products of the industry fall into three major categories ... [Pg.79]

The first (inconclusive) work bearing on the synthesis of element 104 was published by the Dubna group in 1964. However, the crucial Dubna evidence (1969-70) for the production of element 104 by bombardment of 94PU with loNe came after the development of a sophisticated method for rapid in situ chlorination of the product atoms followed by their gas-chromatographic separation on an atom-by-atom basis. This was a heroic enterprise which combined cyclotron nuclear physics and chemical separations. As we have seen, the actinide series of elements ends with 103 Lr. The next element should be in Group 4 of the transition elements, i.e. a heavier congenor of Ti, Zr and Hf. As such it would be expected to have a chloride... [Pg.1281]

The most important olefins and diolefins used to manufacture petrochemicals are ethylene, propylene, butylenes, and hutadiene. Butadiene, a conjugated diolefin, is normally coproduced with C2-C4 olefins from different cracking processes. Separation of these olefins from catalytic and thermal cracking gas streams could he achieved using physical and chemical separation methods. However, the petrochemical demand for olefins is much greater than the amounts these operations produce. Most olefins and hutadienes are produced hy steam cracking hydrocarbons. [Pg.91]

Further techniques which may be applied directly to the solvent extract are flame spectrophotometry and atomic absorption spectrophotometry (AAS).13 The direct use of the solvent extract in AAS may be advantageous since the presence of the organic solvent generally enhances the sensitivity of the method. However, the two main reasons for including a chemical separation in the preparation of a sample for AAS are ... [Pg.174]

In view of the selective character of many colorimetric reactions, it is important to control the operational procedure so that the colour is specific for the component being determined. This may be achieved by isolating the substance by the ordinary methods of inorganic analysis double precipitation is frequently necessary to avoid errors due to occlusion and co-precipitation. Such methods of chemical separation may be tedious and lengthy and if minute quantities are under consideration, appreciable loss may occur owing to solubility, supersaturation, and peptisation effects. Use may be made of any of the following processes in order to render colour reactions specific and/or to separate the individual substances. [Pg.673]

An important selection of materials to packaging, particularly food, is based on the permeability of the materials to oxygen, water vapor, and, in the case of packaging bananas, to ethylene gas that is used to artificially ripen the bananas. Selective permeability provides chemical separations, one of the most interesting of which is the use of PTFE materials to separate the hexafluorides of the different isotopes of uranium. [Pg.240]

The intended audience of the second volume entitled Chemical Thermodynamics Advanced Applications is the advanced student or research scientist. We have used it, independently of the first volume, as the text for an advanced topics graduate level course in chemical thermodynamics. It can also serve as an introduction to thermodynamic studies involving more specialized disciplines, including geology, chemical separations, and biochemistry, for the research scientist in or outside of those disciplines. We hope it will be especially helpful for non-thermodynamicists who might be unfamiliar with the power and utility of thermodynamics in diverse applications. Given the more advanced nature of the material covered here, problems are only provided at the end of the chapters in this volume. Taken together, the two volumes make an excellent reference source for chemical thermodynamics. [Pg.682]

Our research at Berkeley has resulted in the discovery of element 94, demonstration of the slow neutron fissiona-bility of its isotope 94239, discovery and demonstration of the slow neutron fissionability of U23 3, spontaneous fission measurements on these isotopes, discovery of 93237, isolation of and nuclear measurements on U23, study of the chemical properties and methods of chemical separation of element 94, demonstration of the presence of small concentrations of 94 in nature and much related information. [Pg.11]

Although the outline of a chemical separation process could be obtained by tracer-scale investigations, the process could not be defined with certainty until study of it was possible at the actual separation plants. Therefore, the question in the summer of 1942, was as follows How could any separations process be tested at the concentration of plutonium that would exist several years later in the production plants when, at this time, there was not even a microgram of plutonium available This problem was solved through an unprecedented series of experiments encompassing two major objectives. First, it was decided to attempt the production... [Pg.12]

Berkeley, and, essentially simultaneously, by Hindman and coworkers (1949) at the Metallurgical Laboratory and Mastick and Wahl (1944) at the Los Alamos Laboratory the latter two groups utilized the milligram amounts of plutonium made available at the time through the operation of the reactor and chemical separation plant at the Clinton Laboratories in Tennessee. The existence of the V oxidation state was established in the summer of 1944, through the use of plutonium obtained from the Clinton Laboratories, by Connick and coworkers (1949), at the University of California, Berkeley. [Pg.27]

Other reasons for investigating plutonium photochemistry in the mid-seventies included the widely known uranyl photochemistry and the similarities of the actinyl species, the exciting possibilities of isotope separation or enrichment, the potential for chemical separation or interference in separation processes for nuclear fuel reprocessing, the possible photoredox effects on plutonium in the environment, and the desire to expand the fundamental knowledge of plutonium chemistry. [Pg.263]

The facilities at Savannah River(j)) consist of five heavy-water-moderated and cooled production reactors, two chemical separations areas as a heavy water extraction plant, several test reactors, reactor fuel and target processing facilities, the Savannah River Laboratory, and many other facilities necessary to support the operations. During the 1960 s, two of the... [Pg.351]

The term "Pyrochemical Processing" is commonly applied to a family of chemical processes that utilize oxidation-reduction reactions to effect chemical separations at elevated temperatures. [Pg.377]

Bordeaux, 22nd-23rd Sept. 1993, p.59-64. 627-8(13) LOW TEMPERATURE PYROLYSIS FOR CHEMICAL SEPARATION OF PLASTIC MIXTURES... [Pg.103]


See other pages where Chemical separations is mentioned: [Pg.342]    [Pg.348]    [Pg.247]    [Pg.419]    [Pg.426]    [Pg.181]    [Pg.201]    [Pg.201]    [Pg.114]    [Pg.201]    [Pg.477]    [Pg.381]    [Pg.1742]    [Pg.187]    [Pg.210]    [Pg.121]    [Pg.51]    [Pg.606]    [Pg.733]    [Pg.310]    [Pg.55]   
See also in sourсe #XX -- [ Pg.589 ]

See also in sourсe #XX -- [ Pg.237 , Pg.241 , Pg.251 , Pg.253 , Pg.255 , Pg.259 , Pg.260 , Pg.261 , Pg.262 , Pg.264 , Pg.266 , Pg.267 , Pg.269 , Pg.273 , Pg.275 , Pg.278 ]

See also in sourсe #XX -- [ Pg.55 ]

See also in sourсe #XX -- [ Pg.346 ]

See also in sourсe #XX -- [ Pg.1908 , Pg.1909 , Pg.1912 , Pg.1914 , Pg.1923 , Pg.1928 , Pg.1931 ]

See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.262 , Pg.263 , Pg.264 , Pg.271 , Pg.272 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.282 , Pg.283 , Pg.286 , Pg.287 , Pg.289 , Pg.292 , Pg.293 , Pg.415 , Pg.416 , Pg.419 , Pg.420 , Pg.431 , Pg.433 , Pg.435 , Pg.438 , Pg.439 , Pg.440 , Pg.441 , Pg.442 , Pg.445 , Pg.446 , Pg.448 , Pg.451 , Pg.460 ]




SEARCH



Separators, chemical

© 2024 chempedia.info