Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity increases

Acetyl chlotide reacts with aromatic hydrocarbons and olefins in suitably inert solvents, such as carbon disulfide or petroleum ether, to furnish ketones (16). These reactions ate catalyzed by anhydrous aluminum chlotide and by other inorganic chlotides (17). The order of catalytic activity increases in the order... [Pg.81]

Copolymers of diallyl dimethyl ammonium chloride [7398-69-8] with acrylamide have been used in electroconductive coatings (155). Copolymers with acrylamide made in activated aqueous persulfate solution have flocculating activity increasing with molecular weight (156). DADM ammonium chloride can be grafted with cellulose from concentrated aqueous solution catalysis is by ammonium persulfate (157). Diallyl didodecylammonium bromide [96499-24-0] has been used for preparation of polymerized vesicles (158). [Pg.88]

Catalyst Particle Size. Catalyst activity increases as catalyst particles decrease in size and the ratio of the catalyst s surface area to its volume increases. Small catalyst particles also have a lower resistance to mass transfer within the catalyst pore stmcture. Catalysts are available in a wide range of sizes. Axial flow converters predorninanfly use those in the 6—10 mm range whereas the radial and horizontal designs take advantage of the increased activity of the 1.5—3.0 mm size. [Pg.340]

In another attempt to relate degree of ionization with antibacterial activity, the effect of pH of the medium on the antibacterial activity was studied (27,28). Activity increased with increase in pH only up to the point at which the dmg was 50% ionized, and then decreased. The interpretation of this was that sulfonamides penetrate the bacterial cell in the unionized form, but once inside the cell, the equiUbrium between ionized and unionized forms is reestabhshed, and the activity is due to the ionized form. For optimum activity, a sulfonamide should have a p that provides half-dissociation at the physiologic pH in the area where it is absorbed. This observation also provided an explanation of the paraboHc relationship between piC and MIC (24). [Pg.467]

The inhibitory activity of sorbates is attributed to the undissociated acid molecule. The activity, therefore, depends on the pH of the substrate. The upper limit for activity is approximately pH 6.5 in moist appHcations the degree of activity increases as the pH decreases. The upper pH limit can be increased in low water activity systems. The following indicates the effect of pH on the dissociation of sorbic acid, ie, percentage of undissociated sorbic acid at various pH levels (76,77). [Pg.284]

The influence of human activities in a stream drainage basin can be relatively simple and direct, as in the disposal of soluble organic and inorganic waste, or more subtie and complex, as in the conversion of prairie or forest land to agricultural use. Such effects can be expected to increase as population density and agricultural, industrial, and mining activities increase. [Pg.204]

Early models used a value for that remained constant throughout the day. However, measurements show that the deposition velocity increases during the day as surface heating increases atmospheric turbulence and hence diffusion, and plant stomatal activity increases (50—52). More recent models take this variation of into account. In one approach, the first step is to estimate the upper limit for in terms of the transport processes alone. This value is then modified to account for surface interaction, because the earth s surface is not a perfect sink for all pollutants. This method has led to what is referred to as the resistance model (52,53) that represents as the analogue of an electrical conductance... [Pg.382]

In order to optimi2e selectivity for any particular system, unwanted by-products must be identified, and reaction conditions and catalyst components that are not favorable to their formation selected. For many reactions, selectivity is found to decrease as the activity increases. Thus sometimes it is necessary to accept a compromise in which some activity or selectivity or both is sacrificed so that the overall product yield or process economics is maximi2ed. [Pg.193]

Surface Area. This property is of paramount importance to catalyst performance because in general catalyst activity increases as the surface area of the catalyst increases. However because some reaction rates are strongly dependent on the nature of the stmcture of the catalytic surface, a linear correlation of catalyst activity with surface area should not be expected. As the catalyst surface area increases, for many reactions the selectivity of the catalyst is found to decrease. If the support material is completely inert to the reactants and products, this effect may be diminished somewhat. [Pg.194]

Chemical Raw Material. In addition to use as a catalyst raw material, clays are used or have been extensively studied as chemical raw material. For example, kaolin has been investigated as a raw material for aluminum metal production. Kaolin has a 38 to 40% alumina content and is available in the United States in large quantities whereas the higher alumina bauxite reserves are very limited. The Bureau of Mines has actively carried out research in the aluminum from ka olin area for many years. Activity increases whenever imports of bauxite are threatened by war or other trade intermptions (1,22,23). [Pg.210]

Alcohols, particularly ethanol [64-17-5] and 2-propanol [67-63-9] are important disinfectants and antiseptics. In the aUphatic series of straight-chain alcohols, the antimicrobial activity increases with increasing molecular weight up to a maximum, depending on the organism tested. For Staphylococcus aureus the maximum activity occurs using amyl alcohol [71-41-0], for Salmonella typhosa, octyl alcohol [111-87-5], CgH gO (43) ioT Mycobacterium tuberculosis... [Pg.123]

The optimum pH for chlorhexidine antimicrobial activity is in the range 5.5—7.0 but varies with the buffer used and the organism, having a range of pH 5—8. With S. aureus and E. coli, activity increases with increased pH the reverse occurs with P. aeruginosa. [Pg.132]

In an attempt to conserve sodium, the kidney secretes renin increased plasma renin activity increases the release of aldosterone, which regulates the absorption of potassium and leads to kafluresis and hypokalemia. Hypokalemia is responsible in part for decreased glucose intolerance (82). Hyponatremia, postural hypotension, and pre-renal azotemia are considered of tittle consequence. Hypemricemia and hypercalcemia are not unusual, but are not considered harmful. However, hypokalemia, progressive decreased glucose tolerance, and increased semm cholesterol [57-88-5] levels are considered... [Pg.211]

Coulthard for amoebicidal action. Each kind of activity increases to a peak as the series is ascended and then diminishes. In the 0-n-alkyl series the peak is at 0-n-butylharmol for Bacillus typhosus, at 0-n-amyl-harmol for Staphylococcus aureus and at 0-n-nonylharmol for Entamoeba histolytica. In the 0-io-diethylaminoalkyl series the peak for B. typhosus is at 0-to-diethylaminononylharmol. No trypanocidal or anti-malarial action was observed in a selection of the compounds tested. ... [Pg.497]

Several proprietary processes have been developed based on the hot carbonate system with an activator or catalyst. These activators increase the performance of the hot PC system by increasing the reaction rates both in the absorber and the stripper. In general, these processes also... [Pg.168]

If activity increases dramatically as pH is increased, catalysis may depend on a deprotonated group that may normally act as a general base, accepting a proton from the substrate or a water molecule, for example (a). Protonation of this group at lower pH prevents it from accepting another proton (from the substrate or water, for example). [Pg.525]

Bell-shaped activity versus pH profiles arise from two separate active-site ionizations, (a) Enzyme activity increases upon deprotonation of (b) Enzyme activity decreases upon deprotonation of A-H. (c) Enzyme activity is maximal in the pH range where one ionizable group is deprotonated (as B ) and the odier group is protonated (as A-H). [Pg.525]

As discussed in Section 22.7, illumination of chloroplasts leads to light-driven pumping of protons into the thylakoid lumen, which causes pH changes in both the stroma and the thylakoid lumen (Figure 22.27). The stromal pH rises, typically to pH 8. Because rubisco and rubisco activase are more active at pH 8, COg fixation is activated as stromal pH rises. Fructose-1,6-bisphosphatase, ribulose-5-phosphate kinase, and glyceraldehyde-3-phosphate dehydrogenase all have alkaline pH optima. Thus, their activities increase as a result of the light-induced pH increase in the stroma. [Pg.736]

FIGURE 25.16 Regulation of fatty acid synthesis and fatty acid oxidation are conpled as shown. Malonyl-CoA, produced during fatty acid synthesis, inhibits the uptake of fatty acylcarnitine (and thus fatty acid oxidation) by mitochondria. When fatty acyl CoA levels rise, fatty acid synthesis is inhibited and fatty acid oxidation activity increases. Rising citrate levels (which reflect an abundance of acetyl-CoA) similarly signal the initiation of fatty acid synthesis. [Pg.818]

The entropy and energy of activation increase with the polarity of these solvents. [Pg.358]

Matrix Activity. Increasing the catalyst matrix activity increases the octane. [Pg.190]

Catalyst activity. An increase in catalyst activity will increase della coke. As catalyst activity increases so does the number of adjaceni sites, which increases the tendency for hydrogen transfer reactions to occur. Hydrogen transfer reactions are bimolecular and require adjacent active sites. [Pg.202]

The alloying elements molybdenum and copper do not, by themselves, enhance passivity of nickel in acid solutions, but instead ennoble the metal. This means that, in practice, these alloying elements confer benefit in precisely those circumstances where chromium does not, viz. hydrogen-evolving acidic solutions, by reducing the rate of anodic dissolution. In more oxidising media the anodic activity increases, and, since binary Ni-Mo and Ni-Cu alloys do not passivate in acidic solutions, they are generally unsuitable in such media. [Pg.773]

Fig. 7.80 A schematic thermodynamic phase stability diagram for the A-C-O system, showing three reaction paths. Paths 2 and 3 are only possible if gaseous diffusion in pores in the oxide product results in a carbon activity increase through the scale, as shown in Fig. 7.81 (after... Fig. 7.80 A schematic thermodynamic phase stability diagram for the A-C-O system, showing three reaction paths. Paths 2 and 3 are only possible if gaseous diffusion in pores in the oxide product results in a carbon activity increase through the scale, as shown in Fig. 7.81 (after...
Temperature is the most important of the factors affecting pickle activity. In general, an increase of 10°C causes an increase in pickling speed of about 70 Vo. Agitation of the pickle increases the speed since it assists the removal of the insoluble scale and rapidly renews the acid at the scale surface. Increase in acid concentration up to about 40 Vo w/w in ferrous sulphate-free solutions, and up to lower concentrations in solutions containing ferrous sulphate, increases the activity. Increase in the ferrous sulphate content at low acid concentrations reduces the activity, but at 90-95 C and at acid concentrations of about 30 Vo w/w it has no effect. [Pg.292]

It was shown in laboratory studies that methanation activity increases with increasing nickel content of the catalyst but decreases with increasing catalyst particle size. Increasing the steam-to-gas ratio of the feed gas results in increased carbon monoxide shift conversion but does not affect the rate of methanation. Trace impurities in the process gas such as H2S and HCl poison the catalyst. The poisoning mechanism differs because the sulfur remains on the catalyst while the chloride does not. Hydrocarbons at low concentrations do not affect methanation activity significantly, and they reform into methane at higher levels, hydrocarbons inhibit methanation and can result in carbon deposition. A pore diffusion kinetic system was adopted which correlates the laboratory data and defines the rate of reaction. [Pg.56]

Lubiprostone, a drug used for treating obstipation, has been claimed to be an activator of C1C-2. This is based on a single paper showing activation by lubiprostone of currents thought to represent C1C-2. These currents, however, differ starkly from typical C1C-2 currents. Furthermore, C1C-2 is located in basolateral membranes of the intestine. This localization is incompatible with the hypothesis that its activation increases intestinal chloride and fluid secretion. Thus, the claim that lubiprostone is a Cl- channel activator must be subject to considerable doubt. [Pg.373]


See other pages where Activity increases is mentioned: [Pg.180]    [Pg.443]    [Pg.528]    [Pg.390]    [Pg.122]    [Pg.126]    [Pg.40]    [Pg.46]    [Pg.395]    [Pg.61]    [Pg.20]    [Pg.205]    [Pg.173]    [Pg.200]    [Pg.238]    [Pg.111]    [Pg.111]    [Pg.53]    [Pg.270]    [Pg.296]    [Pg.298]    [Pg.342]    [Pg.360]    [Pg.439]   
See also in sourсe #XX -- [ Pg.836 ]




SEARCH



Activated carbon increasing

Activation Energy with Increasing Degree of Occupation

Activation surface area Increase

Actively caring increasing

Activity analysis model, increasing

Agricultural activity, increase

Biotransformation increased activity

Building materials activity concentration increase

Chalcone synthase activity, increase

Cobalt increases catalyst activity

Cytochrome peroxidase, activity increase

Cytochromes P450 increased activity

HUMAN ACTIVITIES HAVE INCREASED AIR POLLUTION

Increase of the catalyst activity

Increasing actively caring optimism

Increasing actively caring personal control

Increasing actively caring self-efficacy

Increasing actively caring self-esteem

Increasing returns activity analysis

Increasing the Catalytic Activity of Clays

Niacin activities, increased

Physical activity increasing

Platelet increased activation following

Superoxide dismutase increased activity

Sympathetic activity, increase

© 2024 chempedia.info