Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rockets nozzle

Carbon—carbon composites for rocket nozzles or exit cones are usually made by weaving a 3D preform composed of radial, axial, and circumferential carbon or graphite fibers to near net shape, followed by densification to high densities. Because of the high relative volume cost of the process, looms have been designed for semiautomatic fabrication of parts, taking advantage of selective reinforcement placement for optimum thermal performance. [Pg.5]

Carbon—carbon composites are used in high temperature service for aerospace and aircraft appHcations as weU as for corrosion-resistant industrial pipes and housings. AppHcations include rocket nozzles and cases, aircraft brakes, and sateUite stmctures. Carbonized phenoHc resin with graphite fiber functioned effectively as the ablative shield in orbital re-entry vehicles for many years (92). [Pg.307]

A steady-state rocket-type combustion spray unit has been developed, called high velocity oxy fuel (HVOF), that creates a steady state, continuous, supersonic spray stream (1.2—3 mm dia) resembling a rocket motor exhaust. The portable device injects and accelerates the particles inside a barrel (rocket nozzle). It produces coating quaHty and particle velocities equal to the D-gun at 5—10 times the spray rate with significantly reduced coating costs. [Pg.44]

Pyrolytic graphite was first produced in the late 1800s for lamp filaments. Today, it is produced in massive shapes, used for missile components, rocket nozzles, and aircraft brakes for advanced high performance aircraft. Pyrolytic graphite coated on surfaces or infiltrated into porous materials is also used in other appHcations, such as nuclear fuel particles, prosthetic devices, and high temperature thermal insulators. [Pg.527]

Historically, polymer-matrix composite materials such as boron-epoxy and graphite-epoxy first found favor in applications, followed by metal-matrix materials such as boron-aluminum. Ceramic-matrix and carbon-matrix materials are still under development at this writing, but carbon-matrix materials have been applied in the relatively limited areas of reentry vehicle nosetips, rocket nozzles, and the Space Shuttle since the early 1970s. [Pg.392]

Reider et al. (1965) describe the incident at Los Alamos Laboratory in Jackass Flats, Nevada. An experiment was conducted on January 9, 1964, to test a rocket nozzle, primarily to measure the acoustic sound levels in the test-cell area which occurred during the release of gaseous hydrogen at high flow rates. Hydrogen discharges were normally flared, but, in order to isolate the effect of combustion... [Pg.21]

Ablative Phenol-formaldehyde Charring resin for rocket nozzle... [Pg.119]

A variant of gun barrel erosion, namely rocket nozzle erosion, is discussed in the following abstract ... [Pg.897]

Iridium, deposited by MOC VD, which has shown remarkable resistance to corrosion in small rocket nozzles at temperatures up to 2000°C. [Pg.26]

Chemical vapor infiltration of carbon-carbon structures (reentry heat shields, rocket nozzles, and other aerospace components). [Pg.193]

Iridium Coating for Spacecraft Rocket Nozzles. The coating of rocket nozzles with iridium is a good example of the ability of CVD to provide a complete composite material, in this case a structural refractory shell substrate coated with a corrosion- and oxidation-resistant component. The device is a thruster rocket nozzle for a satellite. The rocket uses a liquid propellant which is a mixture of nitrogen tetroxide and monomethyl hydrazine. [Pg.445]

To this date, the fabrication of structural ceramic composites has been limited to prototypes mostly in high-cost, high-performance aerospace applications such as missile guidance fins, hypersonic fuselage skins, inner flaps, and rocket nozzles. [Pg.481]

Some design concepts for generating uniform droplets have been proposed by Lee et al.[88] These include (a) centrifugal type chamber, (b) atomization by two opposing air-liquid jets, and (c) spinning disk coupled with an ultrasonic field. Some other conceptions include (d) rocket nozzle chamber, (e) frozen particles, (f) rotating brush, and (g) periodic vibrations using saw-tooth waves, etc. [Pg.64]

It should be noted that both KNO3 and K2SO4 are useful additives for eliminating the luminous flame generated at a rocket nozzle and also for suppressing the formation of muzzle flash generated at the exit of a gun barrel. The potassium atoms generated in the gun barrel by the decomposition of these potassium salts are believed to act as a flame retardant. [Pg.178]

HCl molecules form visible white fog when water vapor is present in the atmosphere. An HCl molecule acts as a nucleus, becoming surrounded by HjO molecules, which forms a fog droplet large enough to be visible. When the combustion products of an AP composite propellant are expelled from a rocket nozzle into the atmosphere, a white smoke trail is seen as a rocket projectile trajectory whenever the relative humidity of the air is above about 40%. Furthermore, if the temperature of the atmosphere is below 0 °C (below 273 K), the HjO molecules generated among the combustion products form a white fog with the HCl molecules even if the relative humidity is less than 40 %. Thus, the amount of white fog generated by the combustion of an AP composite propellant is dependent not only on the humidity but also the temperature and pressure of the atmosphere. [Pg.353]

Fig. 12.11 shows the structure of a rocket plume generated downstream of a rocket nozzle. The plume consists of a primary flame and a secondary flame.Fil The primary flame is generated by the exhaust combustion gas from the rocket motor without any effect of the ambient atmosphere. The primary flame is composed of oblique shock waves and expansion waves as a result of interaction with the ambient pressure. The structure is dependent on the expansion ratio of the nozzle, as described in Appendix C. Therefore, no diffusional mixing with ambient air occurs in the primary flame. The secondary flame is generated by mixing of the exhaust gas from the nozzle with the ambient air. The dimensions of the secondary flame are dependent not only on the combustion gas expelled from the exhaust nozzle, but also on the expansion ratio of the nozzle. A nitropolymer propellant composed of nc(0-466), ng(0-369), dep(0104), ec(0 029), and pbst(0.032) is used as a reference propellant to determine the effect of plume suppression. The burning rate characteristics of the propellants are shown in Fig. 6-31. Since the nitropolymer propellant is fuel-rich, the exhaust gas forms a combustible gaseous mixture with the ambient air. This gaseous mixture is ignited and afterburning occurs somewhat downstream of the nozzle exit. The major combustion products in the combustion chamber are CO, Hj, CO2, N2, and HjO. The fuel components are CO and H2, the mole fractions of which at the nozzle throat are co(0.47) and iH2(0.24). Fig. 12.11 shows the structure of a rocket plume generated downstream of a rocket nozzle. The plume consists of a primary flame and a secondary flame.Fil The primary flame is generated by the exhaust combustion gas from the rocket motor without any effect of the ambient atmosphere. The primary flame is composed of oblique shock waves and expansion waves as a result of interaction with the ambient pressure. The structure is dependent on the expansion ratio of the nozzle, as described in Appendix C. Therefore, no diffusional mixing with ambient air occurs in the primary flame. The secondary flame is generated by mixing of the exhaust gas from the nozzle with the ambient air. The dimensions of the secondary flame are dependent not only on the combustion gas expelled from the exhaust nozzle, but also on the expansion ratio of the nozzle. A nitropolymer propellant composed of nc(0-466), ng(0-369), dep(0104), ec(0 029), and pbst(0.032) is used as a reference propellant to determine the effect of plume suppression. The burning rate characteristics of the propellants are shown in Fig. 6-31. Since the nitropolymer propellant is fuel-rich, the exhaust gas forms a combustible gaseous mixture with the ambient air. This gaseous mixture is ignited and afterburning occurs somewhat downstream of the nozzle exit. The major combustion products in the combustion chamber are CO, Hj, CO2, N2, and HjO. The fuel components are CO and H2, the mole fractions of which at the nozzle throat are co(0.47) and iH2(0.24).
The air-intake used to induce air from the flight-altitude atmosphere plays an important role in determining the overall efficiency of ducted rockets. The air pressure built up by the shock wave determines the pressure in the ramburner. The temperature of the compressed air is also increased by the heating effect of the shock wave. The fuel-rich gaseous products formed in the gas generator burn with the pressurized and shock-wave heated air in the ramburner. The nozzle attached to the rear-end of the ramburner increases the flow velocity of the combustion products through an adiabatic expansion process. This adiabatic expansion process is equivalent to the expansion process of a rocket nozzle described in Section 1.2. [Pg.441]

When a supersonic flow emerges from a rocket nozzle, several oblique shock waves and expansion waves are formed along the nozzle flow. These waves are formed repeatedly and form a brilliant diamond-Uke array, as shown in Fig. C-5. When an under-expanded flow, i. e., having pressure higher than the ambient pressure is formed at the nozzle exit, an expansion wave is formed to decrease the pressure. This expansion wave is reflected at the interface between the flow stream and the ambient air and a shock wave is formed. This process is repeated several times to form a diamond array, as shown in Fig. C-6 (a). [Pg.481]

Figure C-5. Diamond shock wave array formed downstream of a rocket nozzle. Figure C-5. Diamond shock wave array formed downstream of a rocket nozzle.
Sh. Tsuchiya, Chemical Equilibrium Lag During Rapid Expansion Through Rocket Nozzle , BullChemSocJapan 34, 854-59 (1961) CA 56,11871 (1962)... [Pg.511]


See other pages where Rockets nozzle is mentioned: [Pg.858]    [Pg.1067]    [Pg.1]    [Pg.321]    [Pg.128]    [Pg.463]    [Pg.26]    [Pg.285]    [Pg.451]    [Pg.468]    [Pg.513]    [Pg.196]    [Pg.146]    [Pg.916]    [Pg.864]    [Pg.442]    [Pg.447]    [Pg.897]    [Pg.479]    [Pg.55]    [Pg.433]    [Pg.119]    [Pg.88]    [Pg.89]    [Pg.349]    [Pg.354]    [Pg.429]    [Pg.773]    [Pg.107]   
See also in sourсe #XX -- [ Pg.178 , Pg.355 , Pg.481 ]

See also in sourсe #XX -- [ Pg.178 , Pg.355 , Pg.481 ]




SEARCH



Nozzle

Nozzle, nozzles

Rockets

Rockets rocket

Welding rocket nozzles

© 2024 chempedia.info