Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From coal

Fuel switch. The choice of fuel used in furnaces and steam boilers has a major effect on the gaseous utility waste from products of combustion. For example, a switch from coal to natural gas in a steam boiler can lead to a reduction in carbon dioxide emissions of typically 40 percent for the same heat released. This results from the lower carbon content of natural gas. In addition, it is likely that a switch from coal to natural gas also will lead to a considerable reduction in both SO, and NO, emissions, as we shall discuss later. [Pg.293]

Klibenzanthracene, C22H 4. Crystallizes in silvery leaflets, m.p. 262 C. A polycyclic aromatic carcinogen obtained from coal tar. The 7,8 derivative, m.p. 196, is also known. [Pg.133]

Commercially, xylene is obtained by the catalytic reforming of naphthenes in the presence of hydrogen see toluene) or was formerly obtained from coal tar. The material so-produced is suitable for use as a solvent or gasoline ingredient, these uses accounting for a large part of xylene consumption. If xylene is required as a chemical, separation into the iso-... [Pg.429]

Synthetic oil is feasible and can be produced from coal or natural gas via synthesis gas (a mixture of carbon monoxide and hydrogen obtained from incomplete combustion of coal or natural gas). However, these are themselves nonrenewable resources. Coal conversion was used in Germany during World War II by hydrogenation or. [Pg.209]

Acetylene was discovered m 1836 by Edmund Davy and characterized by the French chemist P E M Berthelot m 1862 It did not command much attention until its large scale preparation from calcium carbide m the last decade of the nineteenth century stim ulated interest m industrial applications In the first stage of that synthesis limestone and coke a material rich m elemental carbon obtained from coal are heated m an electric furnace to form calcium carbide... [Pg.363]

Benzene was prepared from coal tar by August W von Hofmann m 1845 Coal tar remained the primary source for the industrial production of benzene for many years until petroleum based technologies became competitive about 1950 Current production IS about 6 million tons per year m the United States A substantial portion of this ben zene is converted to styrene for use m the preparation of polystyrene plastics and films... [Pg.424]

Toluene is also an important organic chemical Like benzene its early industrial production was from coal tar but most of it now comes from petroleum... [Pg.424]

Acridine is a heterocyclic aromatic compound obtained from coal tar that is used in the syn thesis of dyes The molecular formula of acndine is C13H9N and its ring system is analogous to that of anthracene except that one CH group has been replaced by N The two most stable reso nance structures of acridine are equivalent to each other and both contain a pyndine like struc tural unit Wnte a structural formula for acridine... [Pg.472]

When benzene is prepared from coal tar it is contaminated thiophene from which it cannot be separated by distillation because of very similar boiling points Shaking a mixture of benzene and thiophene with sulfuric acid causes sulfonation of the thiophene ring but leaves benzene untouched The sulfonation product of thiophene dissolves m the sulfuric acid layer from which the benzene layer is separated the benzene layer is then washed with water and distilled Give the structure of the sulfonation product of thiophene... [Pg.508]

Phenol was first isolated m the early nineteenth century from coal tar and a small por tion of the more than 4 billion lb of phenol produced m the United States each year comes from this source Although significant quantities of phenol are used to prepare aspirin and dyes most of it is converted to phenolic resins used m adhesives and plastics... [Pg.999]

The swelling of the adsorbent can be directly demonstrated as in the experiments of Fig. 4.27 where the solid was a compact made from coal powder and the adsorbate was n-butane. (Closely similar results were obtained with ethyl chloride.) Simultaneous measurements of linear expansion, amount adsorbed and electrical conductivity were made, and as is seen the three resultant isotherms are very similar the hysteresis in adsorption in Fig. 4.27(a), is associated with a corresponding hysteresis in swelling in (h) and in electrical conductivity in (c). The decrease in conductivity in (c) clearly points to an irreversible opening-up of interparticulate junctions this would produce narrow gaps which would function as constrictions in micropores and would thus lead to adsorption hysteresis (cf. Section 4.S). [Pg.236]

Synthesis gas is obtained either from methane reforming or from coal gasification (see Coal conversion processes). Telescoping the methanol carbonylation into an esterification scheme furnishes methyl acetate directly. Thermal decomposition of methyl acetate yields carbon and acetic anhydride,... [Pg.68]

About half of the wodd production comes from methanol carbonylation and about one-third from acetaldehyde oxidation. Another tenth of the wodd capacity can be attributed to butane—naphtha Hquid-phase oxidation. Appreciable quantities of acetic acid are recovered from reactions involving peracetic acid. Precise statistics on acetic acid production are compHcated by recycling of acid from cellulose acetate and poly(vinyl alcohol) production. Acetic acid that is by-product from peracetic acid [79-21-0] is normally designated as virgin acid, yet acid from hydrolysis of cellulose acetate or poly(vinyl acetate) is designated recycle acid. Indeterrninate quantities of acetic acid are coproduced with acetic anhydride from coal-based carbon monoxide and unknown amounts are bartered or exchanged between corporations as a device to lessen transport costs. [Pg.69]

Coa.1 Reserves. As indicated in Table 2, coal is more abundant than oil and gas worldwide. Moreover, the U.S. has more coal than other nations U.S. reserves amount to about 270 biUion metric tons, equivalent to about 11 x 10 MJ (1 x 10 ° BTU = 6600 quads), a large number compared to the total transportation energy use of about 3.5 x lO " MJ (21 quads) per year (11). Methanol produced from U.S. coal would obviously provide better energy security benefits than methanol produced from imported natural gas. At present however, the costs of producing methanol from coal are far higher than the costs of producing methanol from natural gas. [Pg.422]

Produced from Co l. Estimates of the cost of producing methanol from coal have been made by the U.S. Department of Energy (DOE) (12,17) and they are more uncertain than those using natural gas. Experience in coal-to-methanol faciUties of the type and size that would offer the most competitive product is limited. The projected costs of coal-derived methanol are considerably higher than those of methanol produced from natural gas. The cost of the production faciUty accounts for most of the increase (11). Coal-derived methanol is not expected to compete with gasoline unless oil prices exceed 0.31/L ( 50/bbl). Successful development of lower cost entrained gasification technologies could reduce the cost so as to make coal-derived methanol competitive at oil prices as low as 0.25/L ( 40/bbl) (17) (see Coal conversion processes). [Pg.423]

Produced from Biomass. Estimates for methanol produced from biomass indicate (11) that these costs are higher than those of methanol produced from coal. Barring substantial technological improvements, methanol produced from biomass does not appear to be competitive. [Pg.423]

E. Supp, How to Produce Methanol from Coal, Spriager-Vedag, Berlin, 1990. [Pg.436]

Other Organic Processes. Solvent extraction has found appHcation in the coal-tar industry for many years, as for example in the recovery of phenols from coal-tar distillates by washing with caustic soda solution. Solvent extraction of fatty and resimic acid from tall oil has been reported (250). Dissociation extraction is used to separate y -cresol fromT -cresol (251) and 2,4-x5lenol from 2,5-x5lenol (252). Solvent extraction can play a role in the direct manufacture of chemicals from coal (253) (see Eeedstocks, coal chemicals). [Pg.79]

Coal is used ia industry both as a fuel and ia much lower volume as a source of chemicals. In this respect it is like petroleum and natural gas whose consumption also is heavily dominated by fuel use. Coal was once the principal feedstock for chemical production, but ia the 1950s it became more economical to obtain most industrial chemicals from petroleum and gas. Nevertheless, certain chemicals continue to be obtained from coal by traditional routes, and an interest in coal-based chemicals has been maintained in academic and industrial research laboratories. Much of the recent activity in coal conversion has been focused on production of synthetic fuels, but significant progress also has been made on use of coal as a chemical feedstock (see Coal CONVERSION processes). [Pg.161]

The discovery that usehil chemicals could be made from coal tar provided the foundation upon which the modem chemical industry is built. Industrial chemistry expanded rapidly in the late nineteenth century in German laboratories and factories where coal-tar chemicals were refined and used in synthesis of dyes and pharmaceuticals. But coal-tar production has an eadier origin, dating back to the discovery by William Murdock in 1792 that heating coal in the absence of air generated a gas suitable for lighting. Murdock commercialized this technology, and by 1812 the streets of London were illuminated with coal gas (1). [Pg.161]

Many valuable chemicals can be recovered from the volatile fractions produced in coke ovens. Eor many years coal tar was the primary source for chemicals such as naphthalene [91-20-3] anthracene [120-12-7] and other aromatic and heterocycHc hydrocarbons. The routes to production of important coal-tar derivatives are shown in Eigure 1. Much of the production of these chemicals, especially tar bases such as the pyridines and picolines, is based on synthesis from petroleum feedstocks. Nevertheless, a number of important materials continue to be derived from coal tar. [Pg.161]

Fig. 1. General pathways for the production of chemicals from coal (4). Fig. 1. General pathways for the production of chemicals from coal (4).
In 1980, the last year for which a breakdown has been pubUshed, the amount of benzene derived from coal in the United States was 168,000 t or 2.5% of domestic benzene production. Coal-derived toluene was 0.8% of production, and xylenes from coal were only 0.1% of total chemical production (9). The amounts and proportions of BTX components derived from coal in the United States are expected to be nearly the same today as in 1980. Based on information submitted to the International Trade Commission, approximately 25 companies participated in the coal-tar industry in the United States in 1990. [Pg.162]


See other pages where From coal is mentioned: [Pg.56]    [Pg.103]    [Pg.103]    [Pg.115]    [Pg.327]    [Pg.375]    [Pg.287]    [Pg.287]    [Pg.208]    [Pg.1]    [Pg.231]    [Pg.355]    [Pg.379]    [Pg.612]    [Pg.830]    [Pg.830]    [Pg.927]    [Pg.940]    [Pg.949]    [Pg.33]    [Pg.13]    [Pg.69]    [Pg.321]    [Pg.377]    [Pg.387]    [Pg.161]    [Pg.161]    [Pg.162]   
See also in sourсe #XX -- [ Pg.273 ]




SEARCH



© 2024 chempedia.info