Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic fuel gas

Sweny, J. W., 1973, Synthetic Fuel Gas Purification by the SELEXOL Process, paper presented at 165th National Meeting of the American Chemical Society, Division of Fuel Chemistry, Dallas, TX, April 8-12. [Pg.1237]

Coal is used ia industry both as a fuel and ia much lower volume as a source of chemicals. In this respect it is like petroleum and natural gas whose consumption also is heavily dominated by fuel use. Coal was once the principal feedstock for chemical production, but ia the 1950s it became more economical to obtain most industrial chemicals from petroleum and gas. Nevertheless, certain chemicals continue to be obtained from coal by traditional routes, and an interest in coal-based chemicals has been maintained in academic and industrial research laboratories. Much of the recent activity in coal conversion has been focused on production of synthetic fuels, but significant progress also has been made on use of coal as a chemical feedstock (see Coal CONVERSION processes). [Pg.161]

Sasol produces synthetic fuels and chemicals from coal-derived synthesis gas. Two significant variations of this technology have been commercialized, and new process variations are continually under development. Sasol One used both the fixed-bed (Arge) process, operated at about 240°C, as weU as a circulating fluidized-bed (Synthol) system operating at 340°C. Each ET reactor type has a characteristic product distribution that includes coproducts isolated for use in the chemical industry. Paraffin wax is one of the principal coproducts of the low temperature Arge process. Alcohols, ketones, and lower paraffins are among the valuable coproducts obtained from the Synthol process. [Pg.164]

In 1991, the relatively old and small synthetic fuel production faciHties at Sasol One began a transformation to a higher value chemical production facihty (38). This move came as a result of declining economics for synthetic fuel production from synthesis gas at this location. The new faciHties installed in this conversion will expand production of high value Arge waxes and paraffins to 123,000 t/yr in 1993. Also, a new faciHty for production of 240,00 t/yr of ammonia will be added. The complex will continue to produce ethylene and process feedstock from other Sasol plants to produce alcohols and higher phenols. [Pg.167]

The market penetration of synthetic fuels from biomass and wastes in the United States depends on several basic factors, eg, demand, price, performance, competitive feedstock uses, government incentives, whether estabUshed fuel is replaced by a chemically identical fuel or a different product, and cost and availabiUty of other fuels such as oil and natural gas. Detailed analyses have been performed to predict the market penetration of biomass energy well into the twenty-first century. A range of from 3 to about 21 EJ seems to characterize the results of most of these studies. [Pg.13]

Substitute or synthetic natural gas (SNG) has been known for several centuries. When SNG was first discovered, natural gas was largely unknown as a fuel and was more a religious phenomenon (see Gas, NATURAL) (1). Coal (qv) was the first significant source of substitute natural gas and in the early stages of SNG production the product was more commonly known under variations of the name coal gas (2,3). Whereas coal continues to be a principal source of substitute natural gas (4) a more recendy recognized source is petroleum (qv) (5). [Pg.62]

High Heat- Value Gas. High heat-value (high Btu) gas (7) has a heating value usually in excess of 33.5 MJ/m (900 Btu/fT). This is the gaseous fuel that is often referred to as substitute or synthetic natural gas (SNG), or pipeline-quaHty gas. It consists predominantiy of methane and is compatible with natural gas insofar as it may be mixed with, or substituted for, natural gas. [Pg.63]

E. J. Parente and A. Thumann, eds.. The Emerging Synthetic Fuel Industry, Fairmont Press, Adanta, Ga., 1981. [Pg.75]

Metha.nol-to-Ga.soline, The most significant development in synthetic fuels technology since the discovery of the Fischer-Tropsch process is the Mobil methanol-to-gasoline (MTG) process (47—49). Methanol is efftcientiy transformed into C2—C q hydrocarbons in a reaction catalyzed by the synthetic zeoHte ZSM-5 (50—52). The MTG reaction path is presented in Figure 5 (47). The reaction sequence can be summarized as... [Pg.82]

M. E. Frank and B. K. Schmid, "Economic Evaluation and Process Design of a Coal—Oil—Gas (COG) Refinery," paper presented at Symposium on Conceptual Plantsfor the Production of Synthetic Fuels From Coal, AIChE 65th Annual Meeting, New York, Nov. 26, 1972. [Pg.99]

Partial oxidation of coal to form either synthetic fuel, syngas, or synthetic natural gas represents a potential use of oxygen (see Fuels, synthetic). [Pg.481]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

Propylene has many commercial and potential uses. The actual utilisation of a particular propylene supply depends not only on the relative economics of the petrochemicals and the value of propylene in various uses, but also on the location of the supply and the form in which the propylene is available. Eor example, economics dictate that recovery of high purity propylene for polymerisation from a smaH-volume, dilute off-gas stream is not feasible, whereas polymer-grade propylene is routinely recovered from large refineries and olefins steam crackers. A synthetic fuels project located in the western United States might use propylene as fuel rather than recover it for petrochemical use a plant on the Gulf Coast would recover it (see Euels, synthetic). [Pg.128]

Synthetic fuels derived from shale or coal will have to supplement domestic suppHes from petroleum someday, and aircraft gas turbine fuels producible from these sources have been assessed. Shale-derived fuels can meet current specifications if steps are taken to reduce the nitrogen levels. However, extracting kerogen from shale rock and denitrogenating the jet fuel are energy-intensive steps compared with petroleum refining it has been estimated that shale jet fuel could be produced at about 70% thermal efficiency compared with 95% efficiency for petroleum (25). Such a difference represents much higher cost for a shale product. [Pg.417]

Carbon monoxide was discovered in 1776 by heating a mixture of charcoal and 2inc oxide. It provided a source of heat to industry and homes as a component of town gas and was used as a primary raw material in German synthetic fuel manufacture during World War II its compounds with transition metals have been studied extensively (see Carbonyls). Most recently, carbon monoxide emission from vehicle exhausts has been recognized as a primary source of air pollution (qv). [Pg.48]

Whereas near-term appHcation of coal gasification is expected to be in the production of electricity through combined cycle power generation systems, longer term appHcations show considerable potential for producing chemicals from coal using syngas chemistry (45). Products could include ammonia, methanol, synthetic natural gas, and conventional transportation fuels. [Pg.276]

Other synthetic methods have been investigated but have not become commercial. These include, for example, the hydration of ethylene in the presence of dilute acids (weak sulfuric acid process) the conversion of acetylene to acetaldehyde, followed by hydrogenation of the aldehyde to ethyl alcohol and the Fischer-Tropsch hydrocarbon synthesis. Synthetic fuels research has resulted in a whole new look at processes to make lower molecular weight alcohols from synthesis gas. [Pg.403]

Depending on the product and sales arrangement, the revenues calculation can take from a few man-hours to many man-months of effort. For instance, determining the price for a synthetic fuel from coal can be done in a very short time, based on the cost of service. However, if the price is tied to the price of natural gas or oil, the task becomes very difficult, if not impossible. On the other hand, determining the sales growth and selling price for a new product requires a great deal of analysis, speculation, market research, and luck, but projections can be made. [Pg.240]

Reduction of exhaust emissions is being tackled in two ways by engineers, including precombustion and postcombustion technology. One of the most effective methods now being researched and adopted includes use of synthetic fuel made from natural gas. This fuel is crystal clear, and just like water, it has no aromatics, contains no sulfur or heavy metals, and when used with a postcombustion device such as a catalytic converter any remaining NO, or other emissions can be drastically reduced. Estimates currently place the cost of this fuel at 1.50 per gallon, with availability in 2004 to meet the next round of stiff EPA exhaust emission standards. [Pg.335]

From a practical standpoint, coal, because of its abundance, has received the most attention as a source for synthetic fuels. As early as 1807, a coal-gas system was used to light the streets of London, and until the 1930s, when less expensive and safer natural gas started to flow through newly constructed pipelines, gas piped to homes in the Eastern United States was derived from coal. Kerosene, originally a byproduct from the coking of coal tor metallurgical applications, can be considered the first synthetic lic -uid fuel made in quantity. But once crude oil became cheap and abundant, there was little serious research on synthetic liquid fuels in the industrial world until the Energy Crisis of 1973. The main exceptions to... [Pg.1114]

The process will adversely affect air quality by releasing nitrogen oxides, sulfur oxides, carbon monoxides and other particulates into the atmosphere. Better control of the conversion conditions and better control of emissions can make the process cleaner, yet technology cannot do anything to curb carbon emissions. Since much of the carbon in coal is converted to carbon dioxide in the synthesis process, and is not part of the synthetic fuel itself, the amount of carbon dioxide that will be released to the environment during combustion is 50 to 100 percent more than coal, and around three times more than natural gas. [Pg.1117]

Butane is primarily used as a fuel gas within the LPG mixture. Like ethane and propane, the main chemical use of butane is as feedstock for steam cracking units for olefin production. Dehydrogenation of n-butane to butenes and to butadiene is an important route for the production of synthetic rubber. n-Butane is also a starting material for acetic acid and maleic anhydride production (Chapter 6). [Pg.32]


See other pages where Synthetic fuel gas is mentioned: [Pg.997]    [Pg.329]    [Pg.403]    [Pg.5]    [Pg.997]    [Pg.329]    [Pg.403]    [Pg.5]    [Pg.169]    [Pg.565]    [Pg.9]    [Pg.78]    [Pg.78]    [Pg.78]    [Pg.89]    [Pg.96]    [Pg.97]    [Pg.70]    [Pg.259]    [Pg.72]    [Pg.2377]    [Pg.246]    [Pg.341]    [Pg.586]    [Pg.668]    [Pg.1114]    [Pg.1115]    [Pg.1117]    [Pg.1277]    [Pg.956]    [Pg.1027]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Fuel gas

Synthetic fuels

Synthetic gas

© 2024 chempedia.info