Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steam cracker

They are classified apart in this text because their use differs from that of petroleum solvents they are used as raw materials for petrochemicals, particularly as feeds to steam crackers. Naphthas are thus industrial intermediates and not consumer products. Consequently, naphthas are not subject to governmental specifications, but only to commercial specifications that are re-negotiated for each contract. Nevertheless, naphthas are in a relatively homogeneous class and represent a large enough tonnage so that the best known properties to be highlighted here. [Pg.275]

Thermal Cracking. / -Butane is used in steam crackers as a part of the mainly ethane—propane feedstream. Roughly 0.333—0.4 kg ethylene is produced per kilogram / -butane. Primary bv-pioducts include propylene (50 57 kg/100 kg ethylene), butadiene (7-8.5 kg/100 kg), butylenes (5-20 kg/WO kg) and aromatics (6 kg/ToO kg). [Pg.402]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

Production estimates for propylene can only be approximated. Refinery propylene may be diverted captively to fuel or gasoline uses whenever recovery is uneconomic. Steam-cracker propylene production varies with feedstock and operating conditions. Moreover, because propylene is a by-product, production rates depend on gasoline and ethylene demand. [Pg.127]

Worldwide propylene production and capacity utilization for 1992 are given in Table 6 (74). The world capacity to produce propylene reached 41.5 X 10 t in 1992 the demand for propylene amounted to 32.3 x 10 t. About 80% of propylene produced worldwide was derived from steam crackers the balance came from refinery operations and propylene dehydrogenation. The manufacture of polypropylene, a thermoplastic resin, accounted for about 45% of the total demand. Demand for other uses included manufacture of acrylonitrile (qv), oxochemicals, propylene oxide (qv), cumene (qv), isopropyl alcohol (see Propyl alcohols), and polygas chemicals. Each of these markets accounted for about 5—15% of the propylene demand in 1992 (Table 7). [Pg.127]

Propylene has many commercial and potential uses. The actual utilisation of a particular propylene supply depends not only on the relative economics of the petrochemicals and the value of propylene in various uses, but also on the location of the supply and the form in which the propylene is available. Eor example, economics dictate that recovery of high purity propylene for polymerisation from a smaH-volume, dilute off-gas stream is not feasible, whereas polymer-grade propylene is routinely recovered from large refineries and olefins steam crackers. A synthetic fuels project located in the western United States might use propylene as fuel rather than recover it for petrochemical use a plant on the Gulf Coast would recover it (see Euels, synthetic). [Pg.128]

Until 1960, coal was the source material for almost all benzene produced in Europe. Petroleum benzene was first produced in Europe by the United Kingdom in 1952, by Erance in 1958, by the Eederal Republic of Germany in 1961, and by Italy in 1962. Coal has continued to decline as a benzene source in Europe, and this is evident with the closure of coke ovens in Germany (73). Most of the benzene produced in Europe is now derived from petroleum or pyrolysis gasoline. In Europe, pyrolysis gasoline is a popular source of benzene because European steam crackers mn on heavier feedstocks than those in the United States (73). [Pg.44]

Since the bulk of butadiene is recovered from steam crackers, its economics is very sensitive to the selection of feedstocks, operating conditions, and demand patterns. Butadiene supply and, ultimately, its price are strongly influenced by the demand for ethylene, the primary product from steam cracking. Currently there is a worldwide surplus of butadiene. Announcements of a number of new ethylene plants will likely result in additional butadiene production, more than enough to meet worldwide demand for polymers and other chemicals. When butadiene is in excess supply, ethylene manufacturers can recycle the butadiene as a feedstock for ethylene manufacture. [Pg.350]

Table 6 compares the total production of butylenes in the United States, Western Europe, andjapan. Included in this table are relative amounts of productions from different processes. In the United States, about 92% of the butylene production comes from refinery sources, whereas only about 45% in Western Europe andjapan are from this source. This difference arises because the latter cracks mostiy petroleum distillates in the steam crackers that produce larger amounts of butylenes than the light feedstocks cracked in the United States. [Pg.366]

Significant products from a typical steam cracker are ethylene, propylene, butadiene, and pyrolysis gasoline. Typical wt % yields for butylenes from a steam cracker for different feedstocks are ethane, 0.3 propane, 1.2 50% ethane/50% propane mixture, 0.8 butane, 2.8 hill-range naphtha, 7.3 light gas oil, 4.3. A typical steam cracking plant cracks a mixture of feedstocks that results in butylenes yields of about 1% to 4%. These yields can be increased by almost 50% if cracking severity is lowered to maximize propylene production instead of ethylene. [Pg.366]

The C4 stream from steam crackers, unlike its counterpart from a refinery, contains about 45% butadiene by weight. Steam crackers that process significant amounts of Hquid feedstocks have satellite faciUties to recover butadiene from the stream. Conventional distillation techniques are not feasible because the relative volatihty of the chemicals in this stream is very close. Butadiene and butylenes are separated by extractive distillation using polar solvents. [Pg.367]

Many heterogeneous catalysts have been commercialized to dimerize ethylene to selectively yield 1-butene or 2-butene (66—70). Since ethylene is generally priced higher than butylenes, economics favor the production of butylenes from steam crackers, not from ethylene. An exceUent review on... [Pg.367]

A typical feed to a commercial process is a refinery stream or a steam cracker B—B stream (a stream from which butadiene has been removed by extraction and isobutylene by chemical reaction). The B—B stream is a mixture of 1-butene, 2-butene, butane, and isobutane. This feed is extracted with 75—85% sulfuric acid at 35—50°C to yield butyl hydrogen sulfate. This ester is diluted with water and stripped with steam to yield the alcohol. Both 1-butene and 2-butene give j -butyl alcohol. The sulfuric acid is generally concentrated and recycled (109) (see Butyl alcohols). [Pg.372]

The various sources of isobutylene are C streams from fluid catalytic crackers, olefin steam crackers, isobutane dehydrogenation units, and isobutylene produced by Arco as a coproduct with propylene oxide. Isobutylene concentrations (weight basis) are 12 to 15% from fluid catalytic crackers, 45% from olefin steam crackers, 45 to 55% from isobutane dehydrogenation, and high purity isobutylene coproduced with propylene oxide. The etherification unit should be designed for the specific feedstock that will be processed. [Pg.373]

Although the avadabihty of butane—butylene streams containing high concentrations of isobutylene from steam crackers will increase and possibly make these technologies attractive, these same steam crackers also produce recoverable amounts of isoprene direcdy, particularly from heavier feedstocks. [Pg.374]

W. F. Kenney, "Combustion Air Preheat on Steam Cracker Furnaces," Proceedings, 1983 Industrial Energy Conservation Technology Conference, Texas Industdal Commission, p. 595. [Pg.231]

Basic Yield Data. This is a good place to start asking questions. If the process uses a catalytic reaction, do the yields represent new catalyst or catalyst regenerated a number of times For a thermal reaction like an olefin plant steam cracker, questions might be asked about on-stream time between decokings. Therefore, how much contingency is there in the specified number of crackers required ... [Pg.217]

The licensor s basis for sizing has already been discussed and agreed to or changed. For an olefin plant, the number of steam crackers of the licensor s standard size is firm. For a new process, reactor scaleup methods have been agreed to. For a coal gasification plant, gasifier size. [Pg.222]

Recycles are meticulously accounted for because they load equipment and draw utilities. An olefin plant sustaining relatively low conversion per pass often builds up large amounts of unreacted feed that is recycled to the steam crackers. With utilities charged to ultimate products, these recycles would seem to the model to be free. The model would likely opt for very low conversion, which usually gives high ultimate yield and saves feedstock. Assigning the utility costs to users causes the compressor to pay for the extra recycle and the model raises conversion to the true optimum value. [Pg.347]

Separation of raw feedstock. The pyrolysis of petroleum feedstream is carried out at 650-900°C at normal pressure in the presence of steam. The so-called steam-cracking process involves carbon-carbon splitting of saturated, unsaturated and aromatic molecules. The following steam-cracker fractions are used as raw materials to produce hydrocarbon resins. [Pg.606]

The demand for isoprene for Butyl rubber led to the development of a recovery process for this Cj diolefin. Extractive distillation with acetone was the first process used but it has been replaced with acetonitrile (ACN ). The first step in the process is the fractionation of steam cracker debutanizer bottoms in a conventional two tower system to produce a C5 cut containing 30% isoprene. The first tower rejects C and heavier while the second rejects C4 and lighter materials. [Pg.108]

Cracking n-hutane is also similar to ethane and propane, hut the yield of ethylene is even lower. It has been noted that cracking either propane or butanes at nearly similar severity produced approximately equal liquid yields. Mixtures of propane and butane LPG are becoming important steam cracker feedstocks for C2-C4 olefin production. It has been forecasted that world LPG markets will grow from 114.7 million metric tons/day in 1988 to 136.9 MMtpd in the year 2000, and the largest portion of growth will be in the chemicals field. [Pg.98]

The liquefied plastic fraction is heated to over 400 °C. This leads to cracking of the plastic into components of different chain lengths. Gases count for 20%-30% and oils for 60%-70% they are separated by distillation. Any naphtha produced is treated in a steam cracker, resulting in monomers like ethylene and propylene that are recovered. Such monomers can be used to produce plastics again. The heavy fractions can be processed into synthesis gas or conversion coke and then be transferred for further use. At most 5% of the input is converted into a mineral fraction. It is likely that this consists mainly of the inorganic additives in plastics. [Pg.8]

The thermal cracking of a light ffaction of mixed plastics waste was carried out in a fluidised bed reactor and the fractions obtained were analysed by elemental analysis, gas chromatography and ashing. The main components of the waste were PE and PP with a small amount of PS and the bed was fluidised by pyrolysis gas, nitrogen or preheated steam. Experiments conducted at different temperatures and residence times were compared by calculating the crack severity for each experiment. The results obtained revealed that the amounts of ethene and propene obtained by pyrolysis with steam were comparable with those obtained using a commercial steam cracker. [Pg.42]

Manufacture Some of the butadiene produced is recovered from steam crackers along with ethylene and propylene. However, most of it is now produced by the dehydrogenation of butene. CH3 CH-CH-CH3 CH2-CH-CH-CH2 + H2... [Pg.134]

MOI [Mobil olefin interconversion] A process for increasing the yield of propylene from steam crackers and fluid catalytic crackers, using a ZSM-type catalyst. Developed in 1998 by Mobil Technology. [Pg.180]

The chemical value chain shown in fig. 26 results into a product tree over multiple steps starting from the oil refinery and a steam-cracker, chemical products are processed over multiple steps with increasing variety and complexity by adding further substances or additives. The chemical product tree is often reflected in the production structure of chemical produc-... [Pg.77]

Traditional olefin plants have more than one alias. One is even fraudulent. They are variously called ethylene plants after their primary product steam crackers because the feed is usiuilly mixed with steam before it is cracked or whatever aacker, where whatever is the name of the feed (ethane cracker, gas oil cracker, etc.). Olefin plants are sometimes referred to as ethylene crackers, biit only those who don t know any better, use that misnomer. Ethylene is not cracked but rather is the product of cracking. [Pg.66]

Name four alternatives to the steam cracker to make ethylene and/or propylene. [Pg.85]

In 2000 two major petrochemical companies installed process NMR systems on the feed streams to steam crackers in their production complexes where they provided feed forward stream characterization to the Spyro reactor models used to optimize the production processes. The analysis was comprised of PLS prediction of n-paraffins, /xo-paraffins, naphthenes, and aromatics calibrated to GC analysis (PINA) with speciation of C4-C10 for each of the hydrocarbon groups. Figure 10.22 shows typical NMR spectral variability for naphtha streams. Table 10.2 shows the PLS calibration performance obtained with cross validation for... [Pg.325]


See other pages where Steam cracker is mentioned: [Pg.232]    [Pg.127]    [Pg.127]    [Pg.177]    [Pg.366]    [Pg.366]    [Pg.368]    [Pg.370]    [Pg.432]    [Pg.346]    [Pg.169]    [Pg.245]    [Pg.10]    [Pg.8]    [Pg.91]    [Pg.174]    [Pg.233]    [Pg.487]    [Pg.512]    [Pg.519]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Catalytic cracking steam cracker

Crackers

Ethylene steam cracker

Ethylene steam cracker coke formation

Industrial Steam Cracker Process

Natural Gas Condensates as Steam-cracker Feedstocks

Steam cracker products

Steam cracker tar

Steam cracker unit

Steam cracker/cracking

© 2024 chempedia.info