Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hoechst process

Hydroformylation of Other Lower Olefins and Dienes - Lower olefins such as 1-butene or 1,3-butadiene are hydroformylated with acceptable rates using Rh/tppts catalysts according to the RCH/RP process. Hoechst AG Werk Ruhrchemie has developed an attractive new process350 for the hydroformylation of raffinate II, a mixture of 1-butene, cis- and /rbutane derived from the C4 stream of naphtha crackers (after removal of 1,3-butadiene... [Pg.141]

Most of the companies already producing diethylene glycol terephthalate polymers have launched into the applications of polyester film to video and data processing, Hoechst through its Kalle subsidiary, ICI, Rhone-Poulenc, Du Pont, Japan s Toray, Teijin, and Toyobo, the latter in association with Rhone-Poulenc in Nippon Magphane. [Pg.36]

When media other than water are used, related processes operate. Thus in acetic acid ethylene gives vinyl acetate, whereas vinyl ethers may be formed in alcohols. Both homogeneous and heterogeneous syntheses of vinyl acetate have been commercialized. The latter process (Hoechst) involves direct oxidation over a palladium-gold catalyst containing alkali acetate on a support ... [Pg.1287]

This development began to reduce steadily the capacities of acetaldehyde which previously had been made by oxidation of ethylene (Wacker-Hoechst process cf. Section 2.4.1) and converted to acetic acid (cf. Section 2.4.4). Moreover, the Monsanto process, the second-generation process for methanol carbonylation is now being followed by the third generation of highly efficient carbonylation processes, enabling acetic anhydride as well as acetic acid to be produced (cf Scheme 2 Tennessee-Eastman [36] and BP [37] processes). The most advanced process (Hoechst [40]) has so far not been implemented industrially because of neglects... [Pg.11]

Hoechst slurry process Hoeppler viscometer Hoffman degradation Hoffman eliminations Hofmann degradation... [Pg.481]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

The direct oxidation of ethylene is used to produce acetaldehyde (qv) ia the Wacker-Hoechst process. The catalyst system is an aqueous solution of palladium chloride and cupric chloride. Under appropriate conditions an olefin can be oxidized to form an unsaturated aldehyde such as the production of acroleia [107-02-8] from propjiene (see Acrolein and derivatives). [Pg.472]

In the late 1980s, new fully aromatic polyester fibers were iatroduced for use ia composites and stmctural materials (18,19). In general, these materials are thermotropic Hquid crystal polymers that are melt-processible to give fibers with tensile properties and temperature resistance considerably higher than conventional polyester textile fibers. Vectran (Hoechst-Celanese and Kuraray) is a thermotropic Hquid crystal aromatic copolyester fiber composed of -hydroxyben2oic acid [99-96-7] and 6-hydroxy-2-naphthoic acid. Other fully aromatic polyester fiber composites have been iatroduced under various tradenames (19). [Pg.325]

World installed capacity for formic acid is around 330,000 t/yr. Around 60% of the production is based on methyl formate. Of the remainder, about 60% comes from Hquid-phase oxidation and 40% from formate salt-based processes. The largest single producer is BASF, which operates a 100,000 t/yr plant at Ludwigshafen in Germany. The only significant U.S. producer of formic acid is Hoechst-Celanese, which operates a butane oxidation process. [Pg.505]

Butane. Butane LPO has been a significant source for the commercial production of acetic acid and acetic anhydride for many years. At various times, plants have operated in the former USSR, Germany, Holland, the United States, and Canada. Only the Hoechst-Celanese Chemical Group, Inc. plants in Pampa, Texas, and Edmonton, Alberta, Canada, continue to operate. The Pampa plant, with a reported aimual production of 250,000 t/yr, represents about 15% of the 1994 installed U.S. capacity (212). Methanol carbonylation is now the dominant process for acetic acid production, but butane LPO in estabhshed plants remains competitive. [Pg.343]

A considerable amount of carbon is formed in the reactor in an arc process, but this can be gready reduced by using an auxiUary gas as a heat carrier. Hydrogen is a most suitable vehicle because of its abiUty to dissociate into very mobile reactive atoms. This type of processing is referred to as a plasma process and it has been developed to industrial scale, eg, the Hoechst WLP process. A very important feature of a plasma process is its abiUty to produce acetylene from heavy feedstocks (even from cmde oil), without the excessive carbon formation of a straight arc process. The speed of mixing plasma and feedstock is critical (6). [Pg.386]

Hoechst WHP Process. The Hoechst WLP process uses an electric arc-heated hydrogen plasma at 3500—4000 K it was developed to industrial scale by Farbwerke Hoechst AG (8). Naphtha, or other Hquid hydrocarbon, is injected axially into the hot plasma and 60% of the feedstock is converted to acetylene, ethylene, hydrogen, soot, and other by-products in a residence time of 2—3 milliseconds Additional ethylene may be produced by a secondary injection of naphtha (Table 7, Case A), or by means of radial injection of the naphtha feed (Case B). The oil quenching also removes soot. [Pg.386]

Hoechst HTP Process. The two-stage HTP (high temperature pyrolysis) process was operated by Farbwerke Hoechst ia Germany. The cracking stock for the HTP process can be any suitable hydrocarbon. With hydrocarbons higher than methane, the ratio of acetylene to ethylene can be varied over a range of 70 30 to 30 70. Total acetylene and ethylene yields, as wt % of the feed, are noted ia Table 11. [Pg.389]

Electrolytic ceUs for this reaction are manufactured by Hoechst-Uhde (see Electrochemical processing, inorganic) (30,31). [Pg.444]

Another attractive commercial route to MEK is via direct oxidation of / -butenes (34—39) in a reaction analogous to the Wacker-Hoechst process for acetaldehyde production via ethylene oxidation. In the Wacker-Hoechst process the oxidation of olefins is conducted in an aqueous solution containing palladium and copper chlorides. However, unlike acetaldehyde production, / -butene oxidation has not proved commercially successflil because chlorinated butanones and butyraldehyde by-products form which both reduce yields and compHcate product purification, and also because titanium-lined equipment is required to withstand chloride corrosion. [Pg.489]

A variation of the Pd/Cu Wacker-Hoechst process, termed OK Technology, has been proposed by Catalytica Associates (40—46). This process avoids the use of chlorides and uses a Pd/Cu catalyst system which incorporates a polyoxoanion and a nitrile ligand. [Pg.489]

Survey of the patent Hterature reveals companies with processes for 1,4-butanediol from maleic anhydride include BASF (94), British Petroleum (95,96), Davy McKee (93,97), Hoechst (98), Huels (99), and Tonen (100,101). Processes for the production of y-butyrolactone have been described for operation in both the gas (102—104) and Hquid (105—108) phases. In the gas phase, direct hydrogenation of maleic anhydride in hydrogen at 245°C and 1.03 MPa gives an 88% yield of y-butyrolactone (104). Du Pont has developed a process for the production of tetrahydrofuran back-integrated to a butane feedstock (109). Slurry reactor catalysts containing palladium and rhenium are used to hydrogenate aqueous maleic acid to tetrahydrofuran (110,111). [Pg.453]

A process variation of the extraction of 2-isopropylnaphthalene hydroperoxide from the cmde oxidation product with an alkylene glycol has been patented (71). The 2-naphthalenol plant of American Cyanamid, which was using the hydroperoxidation process and had a 14 x 10 t /yr capacity (72), ceased production in 1982, leaving the United States without a domestic producer of 2-naphthol. The 2-naphthol capacity in the Western world is approximately 50 x 10 t/yr, with ACNA, Italy and Hoechst AG, Germany operating the largest plants. China produces about 7 x 10 t/yr. Other important producing countries are Poland, Romania, the former Czechoslovakia, and India (35,52). [Pg.498]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

The chemical industry manufactures a large number of antioxidants (qv) as well as uv stabilizers and their mixtures with other additives used to facilitate resin processing. These companies include American Cyanamid, BASE, Ciba—Geigy, Eastman Chemical, Elf Atochem, Enichem, General Electric, Hoechst—Celanese, Sandoz, and Uniroyal, among others. The combined market for these products in the United States exceeded 900 million in 1994 and will reach 1 billion in the year 2000. [Pg.380]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

Table 1. Comparison of Hoechst/RhcJjne-Poulenc and LP Oxo Processes... Table 1. Comparison of Hoechst/RhcJjne-Poulenc and LP Oxo Processes...
Hydrolysis of Dimethyl Terephthalate. Hoechst Celanese and Eormosa Chemical Eibers Corp. produce a polymer-grade terephthahc acid by hydrolysis of high purity dimethyl terephthalate. Hbls-Troisdorf AG hcenses a process with this step (70). Hydrolysis occurs at 260—280°C and 4500—5500 kPa (45—55 atm) in a hydrolysis reactor without catalysis. The overhead methanol and water vapor is separated and the methanol is returned to the dimethyl terephthalate section for reuse. The reactor hquid is crystallized, cycloned, washed, and further cooled. Einahy, the slurry is centrifuged and dried. The product has less than 25 ppm of 4-formylbenzoic acid and very low levels of other impurities. There may be several hundred parts per million of monomethyl terephthalate, which is incompletely hydrolyzed dimethyl terephthalate. [Pg.490]

Bayer marketed PPS compounds in the United States under the trade name Tedur, but the company has exited the PPS business. PPS is also marketed in the United States by GE Plastics, whose source of neat resin is Tosoh Corporation of Japan. GE Plastics markets PPS under the trade name Supec PPS. Patent activity by Tennessee Eastman describes an alternative process for the production of poly(phenylene sulfide/disulfide), although samples of such product have not appeared as of early 1996. Both Phillips and Hoechst Celanese have aimounced plans to debotdeneck their existing U.S. faciUties in order to meet anticipated market growth. [Pg.442]

The second PPS process practiced commercially was developed by Kureha Chemical Industry Company. Kureha has built a commercial PPS plant in Nishiki, Fukushima (46), and has formed a joint venture, Fortron Industries, with Hoechst Celanese (47). Fortron Industries has completed a commercial PPS plant at Hoechst Celanese s plant in Wilmington, North Carolina. Fortron Industries represents the only other PPS producer in North America. Figure 3 shows a flow diagram for the Kureha PPS process. [Pg.444]

Prior to 1975, reaction of mixed butenes with syn gas required high temperatures (160—180°C) and high pressures 20—40 MPa (3000—6000 psi), in the presence of a cobalt catalyst system, to produce / -valeraldehyde and 2-methylbutyraldehyde. Even after commercialization of the low pressure 0x0 process in 1975, a practical process was not available for amyl alcohols because of low hydroformylation rates of internal bonds of isomeric butenes (91,94). More recent developments in catalysts have made low pressure 0x0 process technology commercially viable for production of low cost / -valeraldehyde, 2-methylbutyraldehyde, and isovaleraldehyde, and the corresponding alcohols in pure form. The producers are Union Carbide Chemicals and Plastic Company Inc., BASF, Hoechst AG, and BP Chemicals. [Pg.374]

The demand for amyl alcohols is expected to remain unchanged until 1993. Competition from other alcohols and limited appHcations limit growth in markets for amyl alcohols. U.S. demand was predicted to grow from 29 x 10 t in 1983 to 32 x Kf t by 1990 (152). In Europe, amyl alcohols account for over 80% of the demand for valeraldehyde (17,000 t in 1984). BASE and Hoechst AG produce both / -valeraldehyde and 2-methylbutyraldehyde from butenes by the oxo process (149). The demand for C-5 in Europe is also predicted not to grow substantially (150). Amyl alcohols are growing at a much lower rate than other oxo alcohols as shown in Table 7. [Pg.376]


See other pages where Hoechst process is mentioned: [Pg.140]    [Pg.323]    [Pg.145]    [Pg.2862]    [Pg.140]    [Pg.323]    [Pg.145]    [Pg.2862]    [Pg.1062]    [Pg.51]    [Pg.53]    [Pg.69]    [Pg.539]    [Pg.386]    [Pg.389]    [Pg.516]    [Pg.63]    [Pg.384]    [Pg.391]    [Pg.411]    [Pg.469]    [Pg.317]    [Pg.354]    [Pg.294]    [Pg.441]    [Pg.38]    [Pg.40]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Acetaldehyde Hoechst process

Carbonylation Hoechst process

Ethylene Wacker—Hoechst process

Hoechst

Ibuprofen Boots-Hoechst-Celanese process

Ibuprofen Hoechst-Celanese process

Technical Applications (Wacker-Hoechst-Processes)

Wacker-Hoechst Acetaldehyde Process

Wacker-Hoechst process

© 2024 chempedia.info