Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts component

Catalyst components Weight percent propylene Catalyst components Weight percent propylene... [Pg.502]

EP(D)M catalyst component pLASTOhffiRS, SYNTHETIC - ETHYLENE-PROPYLENE-DIENE RUBBER] (Vol 8)... [Pg.376]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

Most catalysts for solution processes are either completely soluble or pseudo-homogeneous all their catalyst components are introduced into the reactor as Hquids but produce soHd catalysts when combined. The early Du Pont process employed a three-component catalyst consisting of titanium tetrachloride, vanadium oxytrichloride, and triisobutjlalurninum (80,81), whereas Dow used a mixture of titanium tetrachloride and triisobutylalurninum modified with ammonia (86,87). Because processes are intrinsically suitable for the use of soluble catalysts, they were the first to accommodate highly active metallocene catalysts. Other suitable catalyst systems include heterogeneous catalysts (such as chromium-based catalysts) as well as supported and unsupported Ziegler catalysts (88—90). [Pg.387]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

Dicyclopentadiene is also polymerized with tungsten-based catalysts. Because the polymerization reaction produces heavily cross-Unked resins, the polymers are manufactured in a reaction injection mol ding (RIM) process, in which all catalyst components and resin modifiers are slurried in two batches of the monomer. The first batch contains the catalyst (a mixture of WCl and WOCl, nonylphenol, acetylacetone, additives, and fillers the second batch contains the co-catalyst (a combination of an alkyl aluminum compound and a Lewis base such as ether), antioxidants, and elastomeric fillers (qv) for better moldabihty (50). Mixing two Uquids in a mold results in a rapid polymerization reaction. Its rate is controlled by the ratio between the co-catalyst and the Lewis base. Depending on the catalyst composition, solidification time of the reaction mixture can vary from two seconds to an hour. Similar catalyst systems are used for polymerization of norbomene and for norbomene copolymerization with ethyhdenenorbomene. [Pg.431]

In some liquid-phase processes, catalyst components are slowly leached from the catalyst bed and eventually the catalyst must be replaced. The feasibility of this type of process involves economics, ie, the costs of catalyst maintenance and keeping a unit out of service for catalyst replacement, and product quality and safety, ie, the effects of having catalyst components in the product and their ease of removal. [Pg.193]

In order to optimi2e selectivity for any particular system, unwanted by-products must be identified, and reaction conditions and catalyst components that are not favorable to their formation selected. For many reactions, selectivity is found to decrease as the activity increases. Thus sometimes it is necessary to accept a compromise in which some activity or selectivity or both is sacrificed so that the overall product yield or process economics is maximi2ed. [Pg.193]

Two or more soHd catalyst components can be mixed to produce a composite that functions as a supported catalyst. The ingredients may be mixed as wet or dry powders and pressed into tablets, roUed into spheres, or pelletized, and then activated. The promoted potassium ferrite catalysts used to dehydrogenate ethylbenzene in the manufacture of styrene or to dehydrogenate butanes in the manufacture of butenes are examples of catalysts manufactured by pelletization and calcination of physically mixed soHd components. In this case a potassium salt, iron oxide, and other ingredients are mixed, extmded, and calcined to produce the iron oxide-supported potassium ferrite catalyst. [Pg.195]

Oxychlorination catalysts are prepared by impregnation methods, though the solutions are very corrosive and special attention must be paid to the materials of constmction. Potassium chloride is used as a catalyst component to increase catalyst life by reducing losses of copper chloride by volatilisation. The catalysts used in fixed-bed reactors are typically 5 mm diameter rings or spheres, whereas a 20—100 micrometer powder is used in fluid-bed operations. [Pg.203]

The reaction takes place at low temperature (40-60 °C), without any solvent, in two (or more, up to four) well-mixed reactors in series. The pressure is sufficient to maintain the reactants in the liquid phase (no gas phase). Mixing and heat removal are ensured by an external circulation loop. The two components of the catalytic system are injected separately into this reaction loop with precise flow control. The residence time could be between 5 and 10 hours. At the output of the reaction section, the effluent containing the catalyst is chemically neutralized and the catalyst residue is separated from the products by aqueous washing. The catalyst components are not recycled. Unconverted olefin and inert hydrocarbons are separated from the octenes by distillation columns. The catalytic system is sensitive to impurities that can coordinate strongly to the nickel metal center or can react with the alkylaluminium derivative (polyunsaturated hydrocarbons and polar compounds such as water). [Pg.272]

If the ionic liquid can be recycled and if its lifetime is proven to be long enough, then its initial price is probably not the critical point. In Difasol technology, for example, ionic liquid cost, expressed with respect to the octene produced, is lower than that of the catalyst components. [Pg.278]

The studies mentioned in this brief account did not concern the kinetics of complex reactions taking place on the so-called polyfunctional catalysts, which were treated by Weisz (56) the theory of the use of these catalysts has been further worked out for some consecutive or parallel reactions carried out in the reactors with a varying ratio of catalyst components along the catalyst bed [e.g. (90, 91, 91a) ]. Although the description of these reactions, not coupled in the sense defined in Section III, is beyond the scope of this treatment, we mention here at least an experimental... [Pg.24]

Induction periods are also found in studies of homogeneous systems (St, 69, 88, 97f). For the system MoCMNO CsHsN -tiHsAlCh this has been demonstrated by Hughes (69), who observed that the mixture of catalyst components achieved maximum activity towards the metathesis of 2-pentene after a reaction time of about one hour. [Pg.154]

In order to probe the influence of Au and KOAc on the vinyl acetate synthesis chemistry, four different catalysts were synthesized. All of these catalysts were prepared in a manner exemplified in prior patent technology [Bissot, 1977], and each contained the same palladium loading in an egg-shell layer on the surface of a spherical silica support. The palladium content in the catalyst was easily controlled by adjusting the solution strength of palladium chloride (PdClj) added to the porous silica beads prior to its precipitation onto the support by reaction with sodium metasilicate (Na SiOj). The other two catalyst components (Au and KOAc) were either present or absent in order to complete the independent evaluation of their effect on the process chemistry, e.g., (1) Pd-i-Au-hKOAc, (2) Pd-i-KOAc, (3) Pd-hAu, and (4) Pd only. [Pg.191]

The active catalyst component was introduced by different ways ... [Pg.625]

It appeared that, we needed to limit or omit the ethyl iodide if we were going to operate the ethylene carbonylation in ionic liquids. Unfortunately, the previous literature indicated that EtI or HI (which are interconvertible) represented a critical catalyst component. Therefore, it was surprising when we found that, in iodide based ionic liquids, the Rh catalyzed carbonylation of ethylene to propionic acid was still operable at acceptable rates in the absence of ethyl iodide, as shown in Table 37.2. Further, we not only achieved acceptable rates when omitting the ethyl iodide, we also achieved the desired reduction in the levels of ethyl propionate. More importantly, when the reaction products were analyzed, there was no detectable ethyl iodide formed in situ. However, we should note that we now observed traces of ethanol which were normally undetectable in the earlier Ed containing experiments. [Pg.334]

In order to confirm the hypothesis made on the role of catalyst components, we carried out the reaction with a ratile-type V/Sb/0 catalyst, having V/Sb atomic ratio equal to 1/1 (Table 40.1). This catalyst was prepared with the conventional sluny method, and therefore had a surface area of 10 mVg, lower than that obtained with the Sn/V/Nb/Sb/0 catalysts prepared with the co-precipitation method. However, despite this difference, with V/Sb/0 the conversion of n-hexane was similar to that one obtained with Sn/V/Nb/Sb/0. This is shown in Figure 40.7, which reports the conversion of n-hexane, the selectivity to CO2, to / -containing compounds and the carbon balance as a function of the reaction temperature. [Pg.365]


See other pages where Catalysts component is mentioned: [Pg.398]    [Pg.383]    [Pg.383]    [Pg.384]    [Pg.386]    [Pg.386]    [Pg.388]    [Pg.400]    [Pg.410]    [Pg.469]    [Pg.172]    [Pg.173]    [Pg.174]    [Pg.174]    [Pg.195]    [Pg.195]    [Pg.3]    [Pg.249]    [Pg.273]    [Pg.1328]    [Pg.84]    [Pg.84]    [Pg.140]    [Pg.7]    [Pg.35]    [Pg.726]    [Pg.877]    [Pg.577]    [Pg.115]    [Pg.7]    [Pg.23]   
See also in sourсe #XX -- [ Pg.84 ]

See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Bifunctional catalysts acidic component

Bifunctional catalysts components

Bifunctional catalysts metal component

Catalyst Systems and their Components

Catalyst activation components, physically mixed

Catalyst active component

Catalyst binder component

Catalyst components identification

Catalyst layers hydrophobic component

Catalysts homogeneous multi-component

Catalysts homogeneous single-component

Catalysts multi-component

Catalysts, bifunctional reforming component

Catalysts, bifunctional reforming metal component

Component Catalyst Systems

Component balances catalyst pellet

Component continuous catalyst regeneration

Concentration, component, diffusion porous catalysts

Fischer-Tropsch catalysts components

Heterogeneous catalysts active components

High-temperature Catalyst Layers - Components and Structure

Interaction among catalyst components

Lanthanide catalysts organometallic component

Living single-component catalysts

Multi-component (practical) oxide catalysts

Neodymium Components and Respective Catalyst Systems

Patented Uses as Components of Polymerization Catalysts

Physically mixed catalyst components

Single-component catalysts

Single-component noble metal catalysts

Some General Features of Propagation Centers in One-Component Polymerization Catalysts

The Catalyst (Solid Component)

The Technique of Physically Mixed Catalyst Components

Three or More Components Reactions (Single Catalyst Systems)

Two-component Catalysts

Urethane coating components catalysts

© 2024 chempedia.info