Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat carrier

Reactor heat carrier. Also as pointed out in Sec. 2.6, if adiabatic operation is not possible and it is not possible to control temperature by direct heat transfer, then an inert material can be introduced to the reactor to increase its heat capacity flow rate (i.e., product of mass flow rate and specific heat capacity) and to reduce... [Pg.100]

The introduction of an extraneous component as a heat carrier aflfects the recycle structure of the flowsheet. Figure 4.6a presents an example of the recycle structure for just such a process. [Pg.101]

Where possible, introducing extraneous materials into the process should be avoided, and a material already present in the process should be used. Figure 4.6h illustrates use of the product as the heat carrier. This simplifies the recycle structure of the flowsheet and removes the need for one of the separators (see Fig. 4.66). Use of the product as a heat carrier is obviously restricted to situations where the product does not undergo secondary reactions to unwanted byproducts. Note that the unconverted feed which is recycled also acts as a heat carrier itself. Thus, rather than relying on recycled product to limit the temperature rise (or fall), simply opt for a low conversion, a high recycle of feed, and a resulting small temperature change. [Pg.101]

Whether an extraneous component, product, or feed is used as a heat carrier, the actual configuration, as before, depends on the order of the volatilities (again assuming distillation as the means of separation). [Pg.101]

The use of excess reactants, diluents, or heat carriers in the reactor design has a significant effect on the flowsheet recycle structure. Sometimes the recycling of unwanted byproduct to the reactor can inhibit its formation at the source. If this can be achieved, it improves the overall use of raw materials and eliminates effluent disposal problems. Of course, the recycling does in itself reuse some of the other costs. The general tradeoffs are discussed in Chap. 8. [Pg.126]

Heat carriers. If adiabatic operation produces an unacceptable rise or fall in temperature, then the option discussed in Chap. 2 is to introduce a heat carrier. The operation is still adiabatic, but an inert material is introduced with the reactor feed as a heat carrier. The heat integration characteristics are as before. The reactor feed is a cold stream and the reactor efiluent a hot stream. The heat carrier serves to increase the heat capacity fiow rate of both streams. [Pg.325]

Indirect heat transfer with the reactor. Although indirect heat transfer with the reactor tends to bring about the most complex reactor design options, it is often preferable to the use of a heat carrier. A heat carrier creates complications elsewhere in the flowsheet. A number of options for indirect heat transfer were discussed earlier in Chap. 2. [Pg.326]

A considerable amount of carbon is formed in the reactor in an arc process, but this can be gready reduced by using an auxiUary gas as a heat carrier. Hydrogen is a most suitable vehicle because of its abiUty to dissociate into very mobile reactive atoms. This type of processing is referred to as a plasma process and it has been developed to industrial scale, eg, the Hoechst WLP process. A very important feature of a plasma process is its abiUty to produce acetylene from heavy feedstocks (even from cmde oil), without the excessive carbon formation of a straight arc process. The speed of mixing plasma and feedstock is critical (6). [Pg.386]

Advanced Cracking Reactor. The selectivity to olefins is increased by reducing the residence time. This requires high temperature or reduction of the hydrocarbon partial pressure. An advanced cracking reactor (ACR) was developed jointly by Union Carbide with Kureha Chemical Industry and Chiyoda Chemical Constmction Co. (72). A schematic of this reactor is shown in Figure 6. The key to this process is high temperature, short residence time, and low hydrocarbon partial pressure. Superheated steam is used as the heat carrier to provide the heat of reaction. The burning of fuel... [Pg.442]

This section describes equipment for heat transfer to or from solids by the indirect mode. Such equipment is so constructed that the solids load (burden) is separated from the heat-carrier medium by a wall the two phases are never in direct contact. Heat transfer is by conduction based on diffusion laws. Equipment in which the phases are in direct contact is covered in other sections of this Handbook, principally in Sec. 20. [Pg.1088]

Although they are termed homogeneous, most industrial gas-phase reactions take place in contact with solids, either the vessel wall or particles as heat carriers or catalysts. With catalysts, mass diffusional resistances are present with inert solids, the only complication is with heat transfer. A few of the reactions in Table 23-1 are gas-phase type, mostly catalytic. Usually a system of industrial interest is liquefiea to take advantage of the higher rates of liquid reactions, or to utihze liquid homogeneous cat ysts, or simply to keep equipment size down. In this section, some important noncatalytic gas reactions are described. [Pg.2099]

Engineering liquids" Ionic liquid as heat carrier and thermofluid Wilkes et al. 7... [Pg.350]

Other options are possible. If the process produces a byproduct of reaction, then this can be recycled, provided it does not have an adverse effect on the reactor performance. If the feed enters with an impurity, then the impurity could also be recycled as a heat carrier, provided it too does not have an adverse effect on the reactor performance. [Pg.262]

Whether an extraneous component, product, feed, byproduct or feed impurity is used as heat carrier, as before, the actual configuration of the separation configuration will change between different processes as the properties on which the separation is based change the order of separation. [Pg.262]

The Biolig process of the research center Karlsruhe FZK, Germany. Here, flash pyrolysis, with emphasis on straw as feedstock, is tested to produce a bio-oil-char slurry. The pyrolysis reactor compares to the ER reactor (Lurgi-Ruhrgas) by which sand as heat carrier is mixed and transported together with biomass in a double (twin) screw feeder. A novel unit is constructed with a biomass processing capacity of 12 t/day. [Pg.210]

The main scattering processes limiting the thermal conductivity are phonon-phonon (which is absent in the harmonic approximation), phonon defect, electron-phonon, electron impurity or point defects and more rare electron-electron. For both heat carriers, the thermal resistivity contributions due to the various scattering processes are additive. For... [Pg.89]


See other pages where Heat carrier is mentioned: [Pg.42]    [Pg.101]    [Pg.101]    [Pg.101]    [Pg.427]    [Pg.443]    [Pg.1054]    [Pg.1096]    [Pg.1123]    [Pg.353]    [Pg.296]    [Pg.441]    [Pg.441]    [Pg.193]    [Pg.121]    [Pg.139]    [Pg.261]    [Pg.262]    [Pg.262]    [Pg.262]    [Pg.48]    [Pg.191]    [Pg.199]   
See also in sourсe #XX -- [ Pg.205 ]

See also in sourсe #XX -- [ Pg.167 ]




SEARCH



© 2024 chempedia.info