Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethanes, sulfonated

The principal additive shrink-resist treatment uses the polymer Synthappret BAP (Bayer AG) which is a polypropylene oxide polyurethane containing reactive carbamoyl sulfonates (or isocyanate bisulfite adduct groups, —NHCOSO —Na" ). An aqueous solution of this polymer is padded onto woven fabrics, which are immediately dried. Other polymers may be appHed at the same time to modify the handle. [Pg.353]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Cationic, anionic, and amphoteric surfactants derive thek water solubiUty from thek ionic charge, whereas the nonionic hydrophile derives its water solubihty from highly polar terminal hydroxyl groups. Cationic surfactants perform well in polar substrates like styrenics and polyurethane. Examples of cationic surfactants ate quaternary ammonium chlorides, quaternary ammonium methosulfates, and quaternary ammonium nitrates (see QuARTERNARY AMMONIUM compounds). Anionic surfactants work well in PVC and styrenics. Examples of anionic surfactants ate fatty phosphate esters and alkyl sulfonates. [Pg.297]

Example 4. Glycolysis of Polyurethanes with Propylene Oxide after Pretreatment with a Mixture of Diethanolamine and Potassium Hydroxide.57 Polyurethane scrap was treated with a mixture of diethanolamine and potassium hydroxide at a temperature between about 80 and 140° C with stirring to form an intermediate product. The weight ratio of the scrap PUR polymer to the mixture of diethanolamine and potassium hydroxide was from about 15 1 to 30 1. The intermediate product was reacted with propylene oxide at a temperature of from about 100 to 120°C in a closed reaction vessel to form a polyol. The propylene oxide was added at a rate to maintain a pressure of from about 2 to 5 atm (29-73 psi). The progress of the reaction was followed by following the change of pressure with time. When the pressure remained constant, the reaction of the intermediate product with propylene oxide was considered to be complete. The crude polyol obtained was treated with 10 mol % excess of dodecylbenzene sulfonic acid to remove the potassium hydroxide. [Pg.570]

An immersion time less than 1 min, the neutralization with ammonium hydroxide (it extracts the hydrogen from the sulfonic acid and leaves stabilized S03 NH4 ion pair), and the high concentration of the sulfuric acid (95 wt%) are essential to produce adequate effectiveness of the treatment. H2SO4 treatment increases the T-peel strength of treated TR or SBR-polyurethane adhesive joints (Figure 27.2). [Pg.763]

Most dyes, including sulfonated azo dyes, are nonvolatile or thermally unstable, and therefore are not amenable to GC or gas-phase ionisation processes. Therefore, GC-MS techniques cannot be used. GC-MS and TGA were applied for the identification of acrylated polyurethanes in coatings on optical fibres [295]. Although GC-MS is not suited for the analysis of polymers, the technique can be used for the study of the products of pyrolysis in air, e.g. related to smoke behaviour of CPVC/ABS and PVC/ABS blends [263],... [Pg.468]

Surfactants used as lubricants are added to polymer resins to improve the flow characteristics of the plastic during processing they also stabilise the cells of polyurethane foams during the foaming process. Surfactants are either nonionic (e.g. fatty amides and alcohols), cationic, anionic (dominating class e.g. alkylbenzene sulfonates), zwitterionic, hetero-element or polymeric (e.g. EO-PO block copolymers). Fluorinated anionic surfactants or super surfactants enable a variety of surfaces normally regarded as difficult to wet. These include PE and PP any product required to wet the surface of these polymers will benefit from inclusion of fluorosurfactants. Surfactants are frequently multicomponent formulations, based on petro- or oleochemicals. [Pg.785]

The effect of carboxylate and/or sulfonate ion incorporation on the physical and blood contacting properties of polyurethanes was studied by Cooper and collaborators [476-478]. Specifically, propyl sulfonate and ethyl carboxylate groups were grafted onto polytetramethylene oxide-based polyurethanes. Carboxylate polymers had no statistically significant effect on canine ex vivo blood contact response, but propyl sulfonate incorporation significantly reduced platelet deposition for very short blood contact times. [Pg.40]

Santerre and collaborators [72,73] also found that the plasma interaction of polyether urethanes was significantly altered by incorporation of sulfonate groups [73] which could be derivatized with amino adds [72]. The synergistic effect of pendant PEO and sulfonate groups grafted onto polyurethanes resulted in prolonged ex vivo occlusion times [482]. These results corresponded well with... [Pg.40]

As for the effect of anionic group, there are a number of reports dealing with the antithrombogenic behavior of sulfonate-modified surfaces of segmented polyurethane (SPU). An interesting feature of the adsorptive behavior of fibrinogen on these material surfaces will be discussed in Sect. 4.1. [Pg.15]

It is, of course, possible to prepare a molecule that has both polar and nonpolar characteristics. This is the basis of surfactant chemistry. Typically, a nonpolar molecule is modified by sulfonation. The well-known Pluronic family of surfactants is based on block polymerization of polypropylene oxide (the hydrophobe) and polyethylene oxide (the hydrophUe). It is conceptually possible to build a polyurethane 2005 by CRC Press LLC... [Pg.92]

PC PE PES PET PF PFA PI PMMA PP PPO PS PSO PTFE PTMT PU PVA PVAC PVC PVDC PVDF PVF TFE SAN SI TP TPX UF UHMWPE UPVC Polycarbonate Polyethylene Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde Polyfluoro alkoxy Polyimide Polymethyl methacrylate Polypropylene Polyphenylene oxide Polystyrene Polysulfone Polytetrafluoroethylene Polytetramethylene terephthalate (thermoplastic polyester) Polyurethane Polyvinyl alcohol Polyvinyl acetate Polyvinyl chloride Polyvinyl idene chloride Polyvinylidene fluoride Polyvinyl fluoride Polytelrafluoroethylene Styrene-acrylonitrile Silicone Thermoplastic Elastomers Polymethylpentene Urea formaldehyde Ultrahigh-molecular-weight polyethylene Unplasticized polyvinyl chloride... [Pg.106]

Additional semipermeable membrane—forming polymers are selected from the group consisting of acetaldehyde dimethyl cellulose acetate, cellulose acetate ethyl carbamate, cellulose dimethylamino acetate, semipermeable polyamides, semipermeable polyurethanes, or semipermeable sulfonated polystyrenes. Semipermeable cross-linked selectively permeable polymers formed by coprecipitation of a polyanion and a polycation also can be used for this purpose.22 23 Other polymer materials such as lightly cross-linked polystyrene derivatives, semipermeable cross-linked poly(sodium styrene sulfonate), and semipermeable poly (vinylbenzyltrimethyl ammonium chloride) may be considered.24,25... [Pg.214]

Fastness Improvement. The wetfastnesses of dyeings on wool that has been chlorinated to prevent felting and has received a finish with synthetic resin (poly-amide-epichlorohydrin or polyurethane superwash wool) can be increased by means of methylol amide compounds. Both fastness and antifelting finish can be improved through the application of a polyquatemary compound [88]. Anionic condensation products such as aromatic sulfonic acids with formaldehyde can form a barrier at the surface of the fiber and thus diminish the bleeding of anionic dyes. [Pg.384]

Figure 2. Polymer surfaces exposed to canine blood ex vivo for 60 minutes. Adherent objects are blood platelets. Top underivatized polyurethane bottom sulfonated polyurethane. Reprinted with permission of John Wiley Sons from Grasel, T. G., and Cooper, S. L Properties and Biological Interactions of Polyurethane Anionomers Effect of Sulfonate Incorporation, J. Biomed. Mater. Res. 23, 311 (1989) [16], Copyright 1989, John Wiley Sons. Figure 2. Polymer surfaces exposed to canine blood ex vivo for 60 minutes. Adherent objects are blood platelets. Top underivatized polyurethane bottom sulfonated polyurethane. Reprinted with permission of John Wiley Sons from Grasel, T. G., and Cooper, S. L Properties and Biological Interactions of Polyurethane Anionomers Effect of Sulfonate Incorporation, J. Biomed. Mater. Res. 23, 311 (1989) [16], Copyright 1989, John Wiley Sons.
PB PBI PBMA PBO PBT(H) PBTP PC PCHMA PCTFE PDAP PDMS PE PEHD PELD PEMD PEC PEEK PEG PEI PEK PEN PEO PES PET PF PI PIB PMA PMMA PMI PMP POB POM PP PPE PPP PPPE PPQ PPS PPSU PS PSU PTFE PTMT PU PUR Poly(n.butylene) Poly(benzimidazole) Poly(n.butyl methacrylate) Poly(benzoxazole) Poly(benzthiazole) Poly(butylene glycol terephthalate) Polycarbonate Poly(cyclohexyl methacrylate) Poly(chloro-trifluoro ethylene) Poly(diallyl phthalate) Poly(dimethyl siloxane) Polyethylene High density polyethylene Low density polyethylene Medium density polyethylene Chlorinated polyethylene Poly-ether-ether ketone poly(ethylene glycol) Poly-ether-imide Poly-ether ketone Poly(ethylene-2,6-naphthalene dicarboxylate) Poly(ethylene oxide) Poly-ether sulfone Poly(ethylene terephthalate) Phenol formaldehyde resin Polyimide Polyisobutylene Poly(methyl acrylate) Poly(methyl methacrylate) Poly(methacryl imide) Poly(methylpentene) Poly(hydroxy-benzoate) Polyoxymethylene = polyacetal = polyformaldehyde Polypropylene Poly (2,6-dimethyl-l,4-phenylene ether) = Poly(phenylene oxide) Polyp araphenylene Poly(2,6-diphenyl-l,4-phenylene ether) Poly(phenyl quinoxaline) Polyphenylene sulfide, polysulfide Polyphenylene sulfone Polystyrene Polysulfone Poly(tetrafluoroethylene) Poly(tetramethylene terephthalate) Polyurethane Polyurethane rubber... [Pg.939]

As discussed in the first part, blends containing immiscible components such as polyolefins could improve the performances of the inherently brittle sPS. Until now the reported investigations have concerned simple binary blends containing a polyolefin and sometimes SEBS as a compatibilizer. In addition, sPS/ polyurethane and sPS/sulfonated sPS blends were also investigated. All these studies tried to correlate the microscopic features of the blends with their mechanical properties. [Pg.447]

Hydrolytically stable organotin compounds are also being prepared with sulfonic acids. " These di-alkyltin and trialkyltin sulfonates can be used in combination with t -amines as catalysts in the preparation of polyurethane foams. [Pg.693]

Arguably the most important amorphous ionomer is sulfonated polystyrene (SPS). Other ionomers include poly(styrene-rfln-methacrylic acid) (SMAA), polyurethanes, siloxanes, butadiene-based elastomers, ethylene-propylene-diene terpolymers, acrylates and methacrylates, polyphosphoesters, polyimides, and many others. ... [Pg.1673]


See other pages where Polyurethanes, sulfonated is mentioned: [Pg.308]    [Pg.136]    [Pg.341]    [Pg.10]    [Pg.27]    [Pg.73]    [Pg.200]    [Pg.172]    [Pg.653]    [Pg.903]    [Pg.460]    [Pg.9]    [Pg.40]    [Pg.24]    [Pg.24]    [Pg.798]    [Pg.2345]    [Pg.351]    [Pg.332]    [Pg.191]    [Pg.216]    [Pg.2593]    [Pg.576]    [Pg.1250]    [Pg.20]    [Pg.426]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



© 2024 chempedia.info