Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene polyphenylene oxide

Polyphosphazenes and cyclophosphazenes are almost unique as carrier molecules for transition metals because of the wide range of binding sites that can be incorporated into the phosphazene structure. The substitutive mode of synthesis described earlier allows a structural diversity that is not found, for example, in polystyrene, polyphenylene oxide, or other organic carrier polymers. [Pg.57]

Reprinted from Polymer, Volume 23, M. Kryszewski, B. Wandelt, D.J.S. Birch, R.E. Imhof, A.M. North and R.A. Pethrick, Photo-energy transfer in polystyrene-polyphenylene oxide blends, 926, copyright 1982, with permission... [Pg.120]

Solvent bonding is suitable for all amorphous plastics. It is used primarily on ABS, acrylics, cellulosics, polycarbonates, polystyrene, polyphenylene oxide, and vinyls. Solvent welding is not suitable for crystalline thermoplastics. It is not effective on polyolefins, fluorocarbons, or other solvent-resistant polymers. Solvent welding is moderately effective on nylon and acetal polymers. Solvent welding cannot be used to bond thermosets. [Pg.516]

The DD/CP/MAS C-NMR spectrum of blend of polystyrene/polyphenylene oxide at 27 C. Assignments are indicated in the figure. [Pg.179]

In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]

Triphenyl phosphate [115-86-6] C gH O P, is a colorless soHd, mp 48—49°C, usually produced in the form of flakes or shipped in heated vessels as a hquid. An early appHcation was as a flame retardant for cellulose acetate safety film. It is also used in cellulose nitrate, various coatings, triacetate film and sheet, and rigid urethane foam. It has been used as a flame-retardant additive for engineering thermoplastics such as polyphenylene oxide—high impact polystyrene and ABS—polycarbonate blends. [Pg.478]

The uses of blends of polystyrene with the so-called polyphenylene oxide polymers are discussed in Chapter 21. [Pg.464]

These results demonstrate some interesting chemical principles of the use of acrylic adhesives. They stick to a broad range of substrates, with some notable exceptions. One of these is galvanized steel, a chemically active substrate which can interact with the adhesive and inhibit cure. Another is Noryl , a blend of polystyrene and polyphenylene oxide. It contains phenol groups that are known polymerization inhibitors. Highly non-polar substrates such as polyolefins and silicones are difficult to bond with any technology, but as we shall see, the initiator can play a big role in acrylic adhesion to polyolefins. [Pg.824]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

Cellulose Esters Epoxy Resins Lignins Polystyrene Poly (2-vinyl pyridine) Polyvinyl Chloride Polymethyl methacrylate Polyphenylene Oxide Phenolics Polycarbonate Polyvinyl Acetate, etc. Polyvinyl butyral SBR rubber, etc., etc. [Pg.161]

Polyolefines, polyesters, polycarbonates, polystyrene, polysulphone, polysulphone, polyphenylene oxide and polymethylinethacrylate... [Pg.952]

The advances in polymer blending and alloying technology have occurred through three routes (1) similar-rheology polymer pairs, (2) miscible polymers such as polyphenylene oxide and polystyrene, or (3) interpenetrating polymer networks (IPNs). All these systems were limited to specific polymer combinations that have an inherent physical affinity for each other. However with... [Pg.347]

Polyphenylene oxide/polystyrene Processability, lower cost... [Pg.348]

Odor and taste Polystyrene, styrene-acrylonitrile, polyethylene, acrylic, ABS, polysulfone, EVA, polyphenylene oxide, and many other TPs are examples of satisfactorily odor-free. FDA approvals are available for many of these plastics. Food packaging and refrigerating conditions will also eliminate certain plastics. There are TPs and melamine as well as urea compounds that are suitable for this service. [Pg.431]

Table 3. Flame Retarding 40/60 Polyphenylene Oxide / High Impact Polystyrene Blend... Table 3. Flame Retarding 40/60 Polyphenylene Oxide / High Impact Polystyrene Blend...
Many of the commercially important plastics such as polystyrene, polyamide, polyester, polycarbonate, polysulfone, polyphenylene oxide alloys, epoxy, and phenolics lack good impact... [Pg.329]

An efficient flame retardant effect was demonstrated with 2-mil zinc coatings on polyphenylene oxide-polystyrene blends (Notyl) by Nelson (21). The action may relate to enhanced char formation by chemistry specific to this blend. However, other metal coatings on some other polymers also appeared to contribute a measurable flame retardant effect. [Pg.101]

Commercial examples are notably PVC-ABS blends and the blends of polyphenylene oxide with polystyrene. In the case of PPO-PS blends, it has been shown that the good char forming ability of the PPO greatly helps flame... [Pg.104]

Extraordinary effectiveness has also been claimed for iron halides in polyphenylene oxide/polystyrene blends (40/60 to 60/40 (31), but much of the work on low concentration additives to date has been devoted to polycarbonates. [Pg.249]

Modified-polyphenylene oxide (or ether) is a blend of high impact polystyrene (PS) and polyphenylene oxide (PPO), plus thermal stabilizers and a triarylphosphate flame retardant. Studies of the mechanism of the flame retardant in modified-polyphenylene oxide have shown some evidence for both solid phase and vapor phase inhibition (4). Indeed, one is always interested to know whether flame retardant action is on the solid or vapor phase. [Pg.312]

Noryl GFN-3-70 polyphenylene oxide/polystyrene with fiberglas... [Pg.526]

Methylene Chloride Fractionation of Cross-Coupled 1. 2 and 7. A sample of the block polymer (above 0.50g) was dissolved in 10 mL of methylene chloride. The soluton was stored at 2 C for 2 days. A polymer methylene chloride complex precipitate formed which was removed by filtration at 2aC. The precipitate was then heated at 50 to drive off the methylene chloride. The dried polymer weighed 0.43g and contained (based on IR analysis) 58% by weight of poly(phenylene oxide) and 42% by weight of polystyrene. Analysis of the filtrate after evaporation of the methylene chloride established the presence of a residue containing 17% polyphenylene oxide and 83% polystyrene. On the basis of these results, at least 72% of the initial polystyrene charged to the reaotion medium was calculated as having been incorporated into an acyl-coupled polyphenylene oxide-polystyrene block polymer. [Pg.196]

Other compatible commercial systems are as follows polystyrene (PS) and polyphenylene oxide (PPO) polyvinyl chloride (PVC) and nylon 66 PVC and acrylonitrile-butadiene rubber (NBR) and PS and polycarbonate (PC) (up to 60% PC). [Pg.97]

Eq. (5) in conjunction with Eqs. (8) and (9) have, so far, provided adequate representation of experimental isotherms6 32, which are characterized by an initial con vex-upward portion but tend to become linear at high pressures. Values of K, K2 and s0 have been deduced by appropriate curve-fitting procedures for a wide variety of polymer-gas systems. Among the polymers involved in recent studies of this kind, one may cite polyethylene terephthalate (PET) l2 I4), polycarbonate (PC) 19 22,27), a polyimide l6,17), polymethyl and polyethyl methacrylates (PMMA and PEMA)l8), polyacrylonitrile (PAN)15), a copolyester 26), a polysulphone 23), polyphenylene oxide (PPO)25), polystyrene (PS) 27 28), polyvinyl acetate 29) and chloride 32) (PVAc and PVC), ethyl cellulose 24) (EC) and cellulose acetate (CA) 30,3I>. A considerable number of gases have been used as penetrants, notably He, Ar, N2, C02, S02 and light hydrocarbons. [Pg.97]

The growth of these materials is reflected in the number of polymers which are being glass reinforced. These include polypropylene, polystyrene, styrene acrylonitrile, nylon, polyethylene, acrylonitrile-butadiene-styrene, modified polyphenylene oxide, polycarbonate, acetal, polysulfone, polyurethane, poly (vinyl chloride), and polyester. In addition, the reinforced thermoplastics available now include long-fiber compounds, short-fiber compounds, super concentrates for economy, a combination of long and short fibers, and blends of polymer and fibrous glass. [Pg.465]


See other pages where Polystyrene polyphenylene oxide is mentioned: [Pg.261]    [Pg.25]    [Pg.162]    [Pg.1219]    [Pg.133]    [Pg.274]    [Pg.20]    [Pg.261]    [Pg.25]    [Pg.162]    [Pg.1219]    [Pg.133]    [Pg.274]    [Pg.20]    [Pg.134]    [Pg.589]    [Pg.896]    [Pg.16]    [Pg.341]    [Pg.342]    [Pg.343]    [Pg.296]    [Pg.311]    [Pg.312]    [Pg.328]    [Pg.526]    [Pg.417]    [Pg.421]    [Pg.426]    [Pg.186]    [Pg.105]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Polyphenylenes

Polystyrene/polyphenylene

© 2024 chempedia.info