Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer resin styrene-butadiene-acrylonitrile copolymers

Tween 81. See Polysorbate 81 Tween 85 Tween 85LM. See Polysorbate 85 Twinkling Star. See Antimony trioxide Two-stage phenolic resin. See Novolac resin Two-stage resin. See Phenolic resin Ty-lon B11. See Sodium sulfite Tylac 037 Tylac 97-422 Tylac 692 Tylac 757 Tylac 820 Tylac 936 Tylac 979-RG Tylac 68009-00 Tylac 68010-00 Tylac 68012-00 Tylac 68013-00 Tylac 68014-00. See Styrene/butadiene polymer Tylac 68060-00. See Acrylonitrile copolymer Tylac 68073-00 Tylac 68074-00 Tylac 68075-00 Tylac 68076-00. See Butadiene-acrylonitrile elastomer, carboxyl-terminated Tylac 68150-00 Tylac 68151-00. See Butadiene/acrylonitrile copolymer Tylac 68152-00. See Styrene/butadiene polymer... [Pg.4619]

Acrylic resin Acrylonitrilefbutadiene/styrene copolymer Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite Butadiene/acrylonitrile copolymer EthyleneA/A copolymer Methoxyethyl acrylate Methyl methacrylate butadiene styrene terpolymer Polyethylene elastomer, chlorinated 2-Propenoic acid, 2-methylmethyl ester, polymer with 1,3-butadiene and butyl 2-propenoate impact modifier, PVC rigid EVA/PVC graft polymer impact modifier, recycled polyamides EPDM, maleated impact modifier, thermoplastics Butadiene/acrylonitrile copolymer impact strength modifier PEG-6 trimethylolpropane impact-resistance lights Polyester carbonate resin impact-resistance, lights Polyester carbonate resin impeller... [Pg.5374]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Core-shell emulsion polymers with a core or rubbery stage based on homopolymers or copolymers of butadiene are used as impact modifiers in matrix polymers, such as ABS, for styrene acrylonitrile copolymer methyl methacrylate (MMA) polymers, poly(vinyl chloride) (PVC), and in various engineering resins such as polycarbonate) (PC) poly(ester)s, or poly(styrene)s, further in thermosetting resins such as epoxies. [Pg.315]

STYRENE. Styrene, CgH5CH=CH2, is the simplest and by far the most important member of a series of aromatic monomers. Also known commercially as styrene monomer (SM). styrene is produced in large quantities for polymerization. It is a versatile monomer extensively used for the manufacture of plastics, including crystalline polystyrene, rubber-modified impact polystyrene, expandable polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile resins (SAN), styrene-butadiene latex, styrene-butadiene rubber (SBR). and unsaturated polyester resins. See also Acrylonitrile Polymers. [Pg.1554]

Sonic Modulus. If crack or craze branching is the operative mech-nism in toughening, toughness should be directly related to the difference in sonic speeds in matrix and dispersed phases. Experiments to confirm this effect were undertaken using three commercial ABS resins. These were selected to represent the three main rubber types encountered commercially an acrylonitrile/butadiene copolymer rubber, a butadiene rubber with grafted styrene/acrylonitrile copolymer, and a block polymer of... [Pg.111]

Acrylonitrile-Butadiene-Styrene (ABS) Copolymers. This basic three-monomer system can be tailored to yield resins with a variety of properties. Acrylonitrile contributes heat resistance, high strength, and chemical resistance. Butadiene contributes impact strength, toughness, and retention of low-temperature properties. Styrene contributes gloss, processibility, and rigidity. ABS polymers are composed of discrete polybutadiene particles grafted with the styrene-acrylonitrile copolymer these are dispersed in the continuous matrix of the copolymer. [Pg.912]

The formation of coagulum is observed in all types of emulsion polymers (i) synthetic rubber latexes such as butadiene-styrene, acrylonitrile-butadiene, and butadiene-styrene-vinyl pyridine copolymers as well as polybutadiene, polychloroprene, and polyisoprene (ii) coatings latexes such as styrene-butadiene, acrylate ester, vinyl acetate, vinyl chloride, and ethylene copolymers (iii) plastisol resins such as polyvinyl chloride (iv) specialty latexes such as polyethylene, polytetrafluoroethylene, and other fluorinated polymers (v) inverse latexes of polyacrylamide and other water-soluble polymers prepared by inverse emulsion polymerization. There are no major latex classes produced by emulsion polymerization that are completely free of coagulum formation during or after polymerization. [Pg.201]

Like HIPS, acrylonitrile-styrene-butadiene (ABS) polymers have polybutadiene rubber incorporated into styrene-acrylonitrile copolymer (SAN), giving a resin consisting of a two-phase system with inclusions of rubber in a continuous glassy matrix. Again, development of the best properties requires grafting between the glassy and rubbery phases. [Pg.679]

Acrylonitrile is used in the production of acrylic fibers, resins, and surface coating as an intermediate in the production of pharmaceuticals and dyes as a polymer modifier and as a fumigant. It may occur in fire-effluent gases because of pyroly-ses of polyacrylonitrile materials. Acrylonitrile was found to be released from the acrylonitrile-styrene copolymer and acrylonitrile-styrene-butadiene copolymer bottles when these bottles were filled wifh food-simulating solvents such as water, 4% acetic acid, 20% ethanol, and heptane and stored for 10 days to 5 months (Nakazawa et al. 1984). The release was greater with increasing temperature and was attributable to the residual acrylonitrile monomer in the polymeric materials. [Pg.295]

Synonyms ABS Acrylonitrile/butadiene/styrene polymer Acrylonitrile/ butadiene/styrene resin Butadiene/acrylonitrile/styrene copolymer Poly (acrylonitrile-butadiene-styrene) Poly (actylonitrile-co-butadiene-co-styrene)... [Pg.965]

Styrene-acrylonitrile copolymers are produced commercially for use as structural plastics. The typical acrylonitrile content in such resins is between 20-30%. These materials have better solvent and oil resistance than polystyrene and a higher softening point. In addition, they exhibit better resistance to cracking and crazing and an enhanced impact strength. Although the acrylonitrile copolymers have enhanced properties over polystyrene, they are still inadequate for many applications. Acrylonitrile-butadiene-styrene polymers, known as ABS resins, were therefore developed. [Pg.253]

Figure 3.31. Oxygen uptake for polybutadiene rubber (PBR), grafted polybutadiene rubber (Graft), methacrylonitrile-butadiene-styrene resin (M A-B-S), acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile copolymer (SAN). Only the last polymer contains no double bonds. (Hirai, 1970.)... Figure 3.31. Oxygen uptake for polybutadiene rubber (PBR), grafted polybutadiene rubber (Graft), methacrylonitrile-butadiene-styrene resin (M A-B-S), acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile copolymer (SAN). Only the last polymer contains no double bonds. (Hirai, 1970.)...
Poly (styrene-co-acrylonitrile). See Styrene/acrylonitrile copolymer Poly (styrene-co-allyl alcohol). See Styrene/allyl alcohol copolymer Poly (styrene-co-butadiene). See Styrene/butadiene polymer Poly (styrene-co-divinylbenzene). See Styrene/DVB copolymer Poly (styrene-co-maleic anhydride). See Styrene/MA copolymer Poly (styrene-co-methyl methacrylate). See Styrene/methyl methacrylate copolymer Poly (styrene-co-a-methylstyrene). See Styrene/a-methyl styrene resin Poly (styrene-divinylbenzene). See Styrene/DVB copolymer Polystyrene, expandable Synonyms EPS Expandable polystyrene Expanded polystyrene XPS Definition Amorphous PS beads contg. pentane as a blowing agent and coated with a lubricant the polymer is converted to foamed articles with a closed cell structure by applic. of steam Properties Beads (0.4-1.5 mm diam.)... [Pg.3577]

Plastics can be divided according to their character into amorphous and crystalline. Crystallization is never complete and the so-called crystalline polymers are virtually semicrystalline ones. Examples of amorphous plastics are polystyrene, acrylonitrile-butadiene—styrene copolymers, styrene—acrylonitrile copolymers, polymethylmethacrylate, poly(vinyl chloride), cellulose acetates, phenylene oxide-based resins, polycarbonates, etc. Amorphous polymers are characterized by their glass transition temperature, semicrystalline polymers by both melting and glass transition temperatures. [Pg.3724]

A material made by blending polymers or copolymers with other polymers or elastomers under selected conditions, e.g., styrene-acrylonitrile copolymer (SAN) blended with butadiene-acrylonitrile elastomer (NBR). A mixture of two chemically different polymers to form a material having properties different from but often comprising those of the original resins. Also see Polymer alloy. Low-molecular-weight polymerization product of allyl monomer, CH2 = CHCH2X, where, for example, X = -OH, -OOCCH3. [Pg.2191]

Figure 1 Polymer interpretation chart. PAI, polyamideimide PC, polycarbonate UP, unsaturated polyester PDAP, diarylate phtalate resin VC-VAc, vinyl chloride-vinyl acetate copolymer PVAc, polyvinyl acetate PVFM, polyvinyl formal PUR, polyurethane PA, polyamide PMA, methacrylate ester polymer EVA, ethylene-vinyl acetate copolymer PF, phenol resin EP, epoxide resin PS, polystyrene ABS, acrylonitrile-butadiene-styrene copolymer PPO, polyphenylene oxide P-SULFONE, poly-sulfone PA, polyamide UF, urea resin CN, nitrocellulose PVA, polyvinyl acetate MC, methyl cellulose MF, melamine resin PAN, polyacrylonitrile PVC, polyvinyl chloride PVF, polyvinyl fluoride CR, polychloroprene CHR, polyepichlorohydrin SI, polymethylsiloxane POM, polyoxy-methylene PTFE, polytetrafluoroethylene MOD-PP, modified PP EPT, ethylene-propylene terpolymer EPR, ethylene-propylene rubber PI, polyisoprene BR, butyl rubber PMP, poly(4-methyl pentene-1) PE, poly(ethylene) PB, poly(butene-l). (Adapted from Ref. 22, p. 50.)... Figure 1 Polymer interpretation chart. PAI, polyamideimide PC, polycarbonate UP, unsaturated polyester PDAP, diarylate phtalate resin VC-VAc, vinyl chloride-vinyl acetate copolymer PVAc, polyvinyl acetate PVFM, polyvinyl formal PUR, polyurethane PA, polyamide PMA, methacrylate ester polymer EVA, ethylene-vinyl acetate copolymer PF, phenol resin EP, epoxide resin PS, polystyrene ABS, acrylonitrile-butadiene-styrene copolymer PPO, polyphenylene oxide P-SULFONE, poly-sulfone PA, polyamide UF, urea resin CN, nitrocellulose PVA, polyvinyl acetate MC, methyl cellulose MF, melamine resin PAN, polyacrylonitrile PVC, polyvinyl chloride PVF, polyvinyl fluoride CR, polychloroprene CHR, polyepichlorohydrin SI, polymethylsiloxane POM, polyoxy-methylene PTFE, polytetrafluoroethylene MOD-PP, modified PP EPT, ethylene-propylene terpolymer EPR, ethylene-propylene rubber PI, polyisoprene BR, butyl rubber PMP, poly(4-methyl pentene-1) PE, poly(ethylene) PB, poly(butene-l). (Adapted from Ref. 22, p. 50.)...
A strong bond between free polymer and block or graft copolymer interface is formed. Therefore, block and graft copolymers are used to achieve strong interface adhesion. For example, graft polymers are used in ABS materials (acrylonitrile-butadiene-styrene resins) so as to have a strong bond between the rubber and plastic phases. [Pg.515]


See other pages where Polymer resin styrene-butadiene-acrylonitrile copolymers is mentioned: [Pg.265]    [Pg.444]    [Pg.1023]    [Pg.186]    [Pg.780]    [Pg.1292]    [Pg.8]    [Pg.742]    [Pg.186]    [Pg.321]    [Pg.21]    [Pg.361]    [Pg.42]    [Pg.186]    [Pg.9]    [Pg.36]    [Pg.183]    [Pg.5236]    [Pg.5379]    [Pg.56]    [Pg.18]    [Pg.463]    [Pg.626]    [Pg.361]    [Pg.16]    [Pg.486]    [Pg.571]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Acrylonitril-butadiene-styrene

Acrylonitrile copolymers

Acrylonitrile polymers

Acrylonitrile-butadiene-styrene

Acrylonitrile-butadiene-styrene copolymers

Acrylonitrile-butadiene-styrene resins

Acrylonitrile-styrene-butadiene polymer

Butadiene copolymers

Butadiene polymers

Butadiene-acrylonitrile

Butadiene-styrene resins

Copolymer acrylonitrile-butadiene

Copolymer resinous

Copolymers butadiene-styrene

Polymer copolymers

Polymer resin

Polymer resin copolymers

Polymer resin styrene-butadiene acrylonitrile

Polymer resin styrene-butadiene copolymers

Polymer styrene-butadiene copolymers

Polymers styrene acrylonitrile copolymer

STYRENE-ACRYLONITRILE

Styrene polymers

Styrene-acrylonitrile copolymers

Styrene-butadiene

Styrene-butadiene polymer

Styrene-copolymers

Styrenic polymers

Styrenic resins

© 2024 chempedia.info