Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Materials and analyses

Elemental analyses, involving an impressive array of nondestructive spectroscopic methods or decomposition of the material and analyses by AAS (atomic absorption spectrometry) or ICP-AES (inductively coupled plasma atomic emission spectrometry), form a very important complement to mineralogical analyses as outlined by Boyle (this volume), Korsman et al. (this volume), Amonette Sanders (1994), Sawhney Stilwell (1994), Hawthorne (1988), Fairchild et al. (1988), and Stone (1982). However, these elemental techniques are not intended to provide a qualitative or quantitative assessment of the mineralogy of a deposit. [Pg.152]

Based on the material and analyses in the CAIB report, there are five classic patterns (HoUnagel, 1993) also seen in other accidents and research results ... [Pg.296]

The application of load in materials produces internal modifications such as crack growth, local plastic deformation, corrosion and phase changes, which are accompanied by the emission of acoustic waves in materials. These waves therefore contain information on the internal behaviour of the material and can be analysed to obtain this information. The waves are detected by the use of suitable sensors, that converts the surface movements of the material into electric signal. These signals are processed, analysed and recorded by an appropriate instrumentation. [Pg.31]

In a number of cases, identifications have been extremely difficult, because the materials were synthetic and knowledge of their existence had actually been lost. For example, several rather commonly encountered synthetic pigments, such as the lead-tin yellow often found in Renaissance and Baroque paintings, were originally misidentified or left unidentifiable until extensive research, including analyses of elemental composition and chemical and physical properties, and repHcation experiments, led to proper identification of the material and its manufacturing process. [Pg.418]

LPC Product Quality. Table 10 gives approximate analyses of several LPC products. Amino acid analyses of LPC products have been pubhshed including those from alfalfa, wheat leaf, barley, and lupin (101) soybean, sugar beet, and tobacco (102) Pro-Xan LPC products (100,103) and for a variety of other crop plants (104,105). The composition of LPCs varies widely depending on the raw materials and processes used. Amino acid profiles are generally satisfactory except for low sulfur amino acid contents, ie, cystine and methionine. [Pg.469]

Most of the analytical treatments of center-fed columns describe the purification mechanism in an adiabatic oscillating spiral column (Fig. 22-9). However, the analyses by Moyers (op. cit.) and Griffin (op. cit.) are for a nonadiabatic dense-bed column. Differential treatment of the horizontal-purifier (Fig. 22-8) performance has not been reported however, overall material and enthalpy balances have been described by Brodie (op. cit.) and apply equally well to other designs. [Pg.1994]

In 1974, the Harmonized Monitoring Programme was set up by the Department of the Environment (DoE). The objective was to provide a network of sites at the lower end of catchments, where water quality data could be collected and analysed in a nationally consistent manner, allowing the loads of materials carried through river catchments into estuaries to be estimated and long-term trends in river quality to be assessed. The complete list of substances to be monitored is diverse and specifies about 115 substances. The pesticides aldrin, dieldrin, y-HCH, heptachlor, p,p -DDT and p,p -DDE are included. Figures 1 and 2 show the downward trend of y-HCH and dieldrin over the past 20 years at the Harmonized Monitoring Sites. This confirms that reductions in environmental concentrations have been achieved, particularly over the past 10 years. [Pg.45]

The detection and analysis, including quantification, of cyanobacterial toxins are essential for monitoring their occurrence in natural and controlled waters used for agricultural purposes, potable supplies, recreation and aquaculture. Risk assessment of the cyanobacterial toxins for the protection of human and animal health, and fundamental research, are also dependent on efficient methods of detection and analysis. In this article we discuss the methods developed and used to detect and analyse cyanobacterial toxins in bloom and scum material, water and animal/clinical specimens, and the progress being made in the risk assessment of the toxins. [Pg.111]

Mass speetrometry has been used to eharaeterize mieroeystins using the method of fast-atom bombardment (FAB) ionization and MS/MS. Anatoxin-a has been analysed by MS in eombination with gas ehromatography in bloom and water samples, and in benthie eyanobaeterial material and stomaeh eontents of poisoned animals.Reeently, liquid ehromatography (LC) linked to MS has been employed to analyse mieroeystins, where FAB-MS and atmospherie-pressiire ionization (API-MS) have been used, and anatoxin-a, where thermospray (TSP-MS) was iised. ... [Pg.119]

Health, Safety and Environmental Information MSDS for Raw Materials and Product Previous Process Hazard Analyses... [Pg.57]

Johnson, G.R., Recent Developments and Analyses Associated with the EPIC-2 and EPIC-3 Codes, in 1981 Advances in Aerospace Structures and Materials— AD-01 (edited by Wang, S.S. and Renton, W.J.), the American Society of Mechanical Engineers, New York, 1981, pp. 141-147. [Pg.370]

In Laser Ionization Mass Spectrometry (LIMS, also LAMMA, LAMMS, and LIMA), a vacuum-compatible solid sample is irradiated with short pulses ("10 ns) of ultraviolet laser light. The laser pulse vaporizes a microvolume of material, and a fraction of the vaporized species are ionized and accelerated into a time-of-flight mass spectrometer which measures the signal intensity of the mass-separated ions. The instrument acquires a complete mass spectrum, typically covering the range 0— 250 atomic mass units (amu), with each laser pulse. A survey analysis of the material is performed in this way. The relative intensities of the signals can be converted to concentrations with the use of appropriate standards, and quantitative or semi-quantitative analyses are possible with the use of such standards. [Pg.44]

Commercial poly(methyl methacrylate) is a transparent material, and microscopic and X-ray analyses generally indicate that the material is amorphous. For this reason the polymer was for many years considered to be what is now known as atactic in structure. It is now, however, known that the commercial material is more syndiotactic than atactic. (On one scale of assessment it might be considered about 54% syndiotactic, 37% atactic and 9% isotactic. Reduction in the temperature of free-radical polymerisation down to -78°C increases the amount of syndiotacticity to about 78%). [Pg.405]

A good way of demonstrating the importance of parepistemes, or in other terms, the virtues of subsidiarity, is to pick and analyse just a few examples, out of the many hundreds which could be chosen in the broad field of materials science and engineering. [Pg.160]

What Is the Expected Output or Work Product. The specific form of the finished product will vaiy according to your company s practices and needs. However, it s reasonable to expect that the team s efforts will ultimately produce a set of documented Standard Operating Procedures (SOPs) for the management system, or their equivalent within your organization (see Section 6.3). Interim work products may include progress reports (see Chapter 8), documentation of discussions and analyses, flowcharts, or other materials. [Pg.144]

There are different reasons to discard a column a column can be damaged by irreversible adsorption of reactive polymer samples. Small amounts of styrene oligomers are known to permanently elute from styrene-divinylbenzene materials with tetrahydrofuran as the eluent, which means a continuous shear degradation of the separation material and consequently a decrease of the packing quality this observation is very important if fractions are collected and used for further analyses, e.g., for the determination of infrared (IR) spectra. One can presume that similar effects are present with other organic materials too. [Pg.435]

In 1994, Nam and King (68) developed a SFE/SFC/GC instrumentation system for the quantitative analysis of organochlorine and organophosphorus pesticide residues in fatty food samples (chicken fat, ground beef and lard). In this way, SFC was used as an on-line clean-up step to remove extracted material. The fraction containing pesticide residues is then diverted and analysed by GC. [Pg.242]

One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

These test procedures and standards are subject to change, so it is essential to keep up to date if one has to comply with them. It may be possible to obtain the latest issue on a specific test (such as a simple tensile test or a molecular weight test) by contacting the organization that issued it. For example, the ASTM issues new annual standards that include all changes. Their Annual Books of ASTM Standards contain more than seven thousand standards published in sixty-six volumes that include different materials and products. There are four volumes specifically on plastics 08.01-Plastics 1 08.02-Plastics 11 08.03-Plastics III, and 08.04-Plastic Pipe and Building Products. Other volumes include information on plastics and RPs. The complete ASTM index are listed under different categories for the different products, types of tests (by environment, chemical resistance, etc.), statistical analyses of different test data, and so on (56,128,129). [Pg.301]

Analyses. Plutonium was determined radiometrically. A weighed sample of a compound was dissolved in 2M H2S0lt with a few drops of 90% HNOj to oxidize organic material, and an aliquot of this solution counted for alpha activity. [Pg.47]

There are in-line LC/spectroscopic systems available, but in most cases it is easier to carry out a semi-preparative separation, collect the material and carry out the spectroscopic examination off-line. However, for routine quality control analyses, where the sample... [Pg.251]

The analyses that may be carried out can be conveniently classified as qualitative, the determination of the molecular weights and/or structures of both high-and low-molecular-weight materials, and quantitative, their precise and accurate quantitation. [Pg.289]

The second analytical method uses a combustion system (O Neil et al. 1994) in place of reaction with BrF,. This method was used for the crocodiles because they were represented by very thin caps of enamel. The enamel was powdered and sieved (20 mg), pretreated in NaOCl to oxidize organic material and then precipitated as silver phosphate. Approximately 10-20 mg of silver phosphate were mixed with powdered graphite in quartz tubes, evacuated and sealed. Combustion at 1,200°C was followed by rapid cooling in water which prevents isotopic fractionation between the CO2 produced and the residual solid in the tube. Analyses of separate aliquots from the same sample typically showed precisions of 0.1%o to 0.4%o with 2 to 4 repetitive analyses even though yields are on the order of 25%. [Pg.127]

Maceration of crnshed or gronnd material in methanol containing small amounts of HCl (<1%) is commonly used at refrigerated temperatures for times ranging from a few hours to overnight. The extracted material is usually too dilute for further analyses and the extraction procednre is usually followed by evaporation of the methanol using vacnnm and mild temperatures (30 to 40°C). Alternatively, the plant materials and solvents can be mixed well with a laboratory blender for a few minutes or a chemical-resistant stir bar for a longer time. Concentration of anthocyanin extracts can be done by rotary evaporation under vacuum conditions for volatile solvents or lyophilization for water. [Pg.482]


See other pages where Materials and analyses is mentioned: [Pg.306]    [Pg.206]    [Pg.329]    [Pg.577]    [Pg.201]    [Pg.306]    [Pg.206]    [Pg.329]    [Pg.577]    [Pg.201]    [Pg.1751]    [Pg.1786]    [Pg.1909]    [Pg.49]    [Pg.494]    [Pg.21]    [Pg.352]    [Pg.388]    [Pg.201]    [Pg.29]    [Pg.19]    [Pg.106]    [Pg.1]    [Pg.74]    [Pg.52]    [Pg.749]    [Pg.807]    [Pg.528]    [Pg.225]    [Pg.196]    [Pg.231]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Analysis of Biological Materials and Xenobiotics

Analysis of Plant Material and Biological Matrices

Chemical analysis of feather and down textile materials

Reference Materials Currently Available for the Analysis of Sediment and Particulate Samples

Schuhmann and J.A. Philpotts ass-spectrometric stable-isotope dilution analysis for lanthanides in geochemical materials

Schuhmann and J.A. Philpotts, Mass-spectrometric stable-isotope dilution analysis for lanthanides in geochemical materials

The Analysis of Animal Feed and Plant Materials

Windows, Cells, and Materials for Transmission Analysis

© 2024 chempedia.info