Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass separation

The optimization of the process in recent years, led to defined ion formation with solvent evaporation and complete desolvatation of analyte ions, which are then accelerated towards the mass separator. Analyte molecules often form multiply charged ions. ESI can be carried out both in positive and in negative mode. The sample introduction can be performed with microscale tips mainly made of fused silica capillaries, which are inexpensive and available in various sizes and geometric forms. Recently, nanospray technologies as microvariants of ESI with increased sensitivity were developed, which allowed the analysis of extremely small sample amounts [57]. [Pg.54]


This technique is useful not only when the mixture is impossible to separate by conventional distillation because of an azeotrope but also when the mixture is difficult to separate because of a particularly low relative volatility. Such distillation operations in which an extraneous mass-separating agent is used can be divided into two broad classes. [Pg.81]

In the first class, azeotropic distillation, the extraneous mass-separating agent is relatively volatile and is known as an entrainer. This entrainer forms either a low-boiling binary azeotrope with one of the keys or, more often, a ternary azeotrope containing both keys. The latter kind of operation is feasible only if condensation of the overhead vapor results in two liquid phases, one of which contains the bulk of one of the key components and the other contains the bulk of the entrainer. A t3q)ical scheme is shown in Fig. 3.10. The mixture (A -I- B) is fed to the column, and relatively pure A is taken from the column bottoms. A ternary azeotrope distilled overhead is condensed and separated into two liquid layers in the decanter. One layer contains a mixture of A -I- entrainer which is returned as reflux. The other layer contains relatively pure B. If the B layer contains a significant amount of entrainer, then this layer may need to be fed to an additional column to separate and recycle the entrainer and produce pure B. [Pg.81]

The second class of distillation operation using an extraneous mass-separating agent is extractive distillation. Here, the extraneous mass-separating agent is relatively involatile and is known as a solvent. This operation is quite different from azeotropic distillation in that the solvent is withdrawn from the column bottoms and does not form an azeotrope with any of the components. A typical extractive distillation process is shown in Fig. 3.11. ... [Pg.82]

As with azeotropic distillation, the separation is possible in extractive distillation because the extraneous mass-separating agent interacts more strongly with one of the components than the other. This in turn alters in a favorable way the relative volatility between the key components. [Pg.82]

In principle, extractive distillation is more useful than azeotropic distillation because the process does not depend on the accident of azeotrope formation, and thus a greater choice of mass-separating agent is, in principle, possible. In general, the solvent should have a chemical structure similar to that of the less volatile of the two components. It will then tend to form a near-ideal mixture with the less volatile component and a nonideal mixture with the more volatile component. This has the effect of increasing the volatility of the more volatile component. [Pg.82]

If an azeotropic mixture is to be separated by distillation, then use of pressure change to alter the azeotropic composition should be considered before use of an extraneous mass-separating agent. Avoiding the use of extraneous materials often can prevent environmental problems later in the design. [Pg.92]

There are otlier teclmiques for mass separation such as tire quadmpole mass filter and Wien filter. Anotlier mass spectrometry teclmique is based on ion chromatography, which is also capable of measuring tire shapes of clusters [30, 31]. In tills metliod, cluster ions of a given mass are injected into a drift tube witli well-defined entrance and exit slits and filled witli an inert gas. The clusters drift tlirough tills tube under a weak electric potential. Since the... [Pg.2390]

The ion current resulting from collection of the mass-separated ions provides a measure of the numbers of ions at each m/z value (the ion abundances). Note that for this ionization method, all ions have only a single positive charge, z = 1, so that m/z = m, which means that masses are obtained directly from the measured m/z values. Thus, after the thermal ionization process, m/z values and abundances of ions are measured. The accurate measurement of relative ion abundances provides highly accurate isotope ratios. This aspect is developed more fully below. [Pg.46]

Note that in mass spectrometry/mass spectrometry (MS/MS) applications, quadrupole and magnetic sectors can be used together advantageously. It is also worth noting that the quadrapole can be operated without the DC voltages. In this RF-only mode, no mass separation occurs, and these quadrapoles are used as ion transmission guides, described in Chapter 49. [Pg.186]

Separation of ions according to their m/z values can be effected by magnetic and/or electric fields used as mass analyzers, which are described in Chapters 24 through 27. However, apart from measurement of m/z values, there is often a need to be able to transmit ions as efficiently as possible from one part of a mass spectrometer to another without any mass separation. [Pg.371]

It is perhaps worth noting here that, if a quadrupole assembly is used in this all-RF mode, there is no significant mass separation as ions of different mass move through the guide. However, if a DC potential is applied to one pair of rods, the guiding potential changes to that shown in Equation 49.5, in which F is the applied DC potential. [Pg.380]

Tap Density. Tapping a mass of loose powder, or more specifically, the appHcation of vibration to the powder mass, separates the powder particles intermittently, and thus overcomes friction. This short-time lowering of friction results in an improved powder packing between particles and in a higher apparent density of the powder mass. Tap density is always higher than apparent density. The amount of increase from apparent to tap density depends mainly on particle size and shape (see Table 4). [Pg.181]

Ion Implantation Systems. An ion implantation system is used to accelerate ionized atomic or molecular species toward a target sample. The ionized species penetrates the surface of the sample with the resulting depth profile dependent on the implanted species mass, energy, and the sample target s tilt and rotation. An implanter s main components include an ionizer, mass separator, acceleration region, scanning system, and sample holder (168). [Pg.382]

The implanted ion can be singly or multiply charged and can be any isotope. The mass separation system is used to avoid contamination. As an example, when implanting silicon the isotope is often used instead of to avoid contamination from the signals. After mass... [Pg.382]

Determine identity of any additional species to be used as mass separating agent (MSA). [Pg.450]

D/B = distillate-to-bottoms ratio, RCM = residue curve map, DRD = distillation region diagram, and MSA = mass separating agent. [Pg.453]

Whereas Hquid separation method selection is clearly biased toward simple distillation, no such dominant method exists for gas separation. Several methods can often compete favorably. Moreover, the appropriateness of a given method depends to a large extent on specific process requirements, such as the quantity and extent of the desired separation. The situation contrasts markedly with Hquid mixtures in which the appHcabiHty of the predominant distiHation-based separation methods is relatively insensitive to scale or purity requirements. The lack of convenient problem representation techniques is another complication. Many of the gas—vapor separation methods ate kinetically controUed and do not lend themselves to graphical-phase equiHbrium representations. In addition, many of these methods require the use of some type of mass separation agent and performance varies widely depending on the particular MSA chosen. [Pg.457]

The simple and complex distillation operations just described all have two things in common (1) both rectifying and stripping sections are providea so that a separation can be achieved between two components that are adjacent in volatility and (2) the separation is effected only by the addition and removal of energy and not by the addition of any mass separating agent (MSA) such as in liquid-liquid extraction. [Pg.1243]

Introduction The term azeotropic distillation has been apphed to a broad class of fractional distillation-based separation techniques in that specific azeotropic behavior is exploited to effect a separation. The agent that causes the specific azeotropic behavior, often called the entrainer, may already be present in the feed mixture (a self-entraining mixture) or may be an added mass-separation agent. Azeotropic distillation techniques are used throughout the petro-... [Pg.1306]

In Laser Ionization Mass Spectrometry (LIMS, also LAMMA, LAMMS, and LIMA), a vacuum-compatible solid sample is irradiated with short pulses ("10 ns) of ultraviolet laser light. The laser pulse vaporizes a microvolume of material, and a fraction of the vaporized species are ionized and accelerated into a time-of-flight mass spectrometer which measures the signal intensity of the mass-separated ions. The instrument acquires a complete mass spectrum, typically covering the range 0— 250 atomic mass units (amu), with each laser pulse. A survey analysis of the material is performed in this way. The relative intensities of the signals can be converted to concentrations with the use of appropriate standards, and quantitative or semi-quantitative analyses are possible with the use of such standards. [Pg.44]

In quadrupole-based SIMS instruments, mass separation is achieved by passing the secondary ions down a path surrounded by four rods excited with various AC and DC voltages. Different sets of AC and DC conditions are used to direct the flight path of the selected secondary ions into the detector. The primary advantage of this kind of spectrometer is the high speed at which they can switch from peak to peak and their ability to perform analysis of dielectric thin films and bulk insulators. The ability of the quadrupole to switch rapidly between mass peaks enables acquisition of depth profiles with more data points per depth, which improves depth resolution. Additionally, most quadrupole-based SIMS instruments are equipped with enhanced vacuum systems, reducing the detrimental contribution of residual atmospheric species to the mass spectrum. [Pg.548]

The spark source is an energetic ionization process, producing a rich spectrum of multiply charged species (Af/2, Af/3, Af/4, etc.). These masses, falling at halves, thirds, and fourths of the unit mass separation can aid in the positive identification of elements. In Figure 2, species like Au and are labeled. The most abundant... [Pg.604]

The instrumentation for SSIMS can be divided into two parts (a) the primary ion source in which the primary ions are generated, transported, and focused towards the sample and (b) the mass analyzer in which sputtered secondary ions are extracted, mass separated, and detected. [Pg.88]


See other pages where Mass separation is mentioned: [Pg.83]    [Pg.2390]    [Pg.231]    [Pg.233]    [Pg.272]    [Pg.282]    [Pg.372]    [Pg.390]    [Pg.446]    [Pg.448]    [Pg.449]    [Pg.455]    [Pg.459]    [Pg.175]    [Pg.1313]    [Pg.547]    [Pg.552]    [Pg.552]    [Pg.247]    [Pg.249]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.257]    [Pg.261]    [Pg.263]    [Pg.267]    [Pg.269]   
See also in sourсe #XX -- [ Pg.373 , Pg.383 ]




SEARCH



Amino acids separation mass spectrometry detection

Box 22-2 How Ions of Different Masses Are Separated by a Magnetic Field

Carotenoids mass separation

Catalyst Immobilization using SCFs as the Only Mass-Separating Agent

Detection techniques mass separation

Dynamic mass separation systems

Factors Influencing Mass Transfer in FI Gas-diffusion Separation Systems

General Aspects of Supercritical Fluids as Mass Separating Agents

High resolution separation column Chromatography Mass Spectroscopy in Polymer Analysis

High resolution separation column Mass detection

High resolution separation column Mass spectroscopy

Hollow fiber membrane based separation mass transfer

Isotopes separated by mass spectrometr

Mass diffusion separability

Mass fractions from binary separation

Mass membrane separation process

Mass separating agents

Mass separation agent

Mass separation devices

Mass separation membranes

Mass separation processes

Mass separation spectrometer

Mass separation spectrum

Mass separator

Mass separator

Mass spectrometry enantiomer separation

Mass spectrometry separation techniques

Mass transfer coefficients membranes, separation

Mass transfer constant separation factors

Mass transfer cyclone separators

Mass transfer flash separation

Mass transfer separation processes

Mass, separation transfer

Mass-separating-agent process

Mass-transfer rates in chromatographic separations

Membrane process, mass transfer modeling separation

Membrane separation mass balance

Minimum mass separating agents

Newtonian fluid, mass separation

Packed towers, separations mass transfer coefficients

Quadrupole mass separator

Separation Techniques Coupled with Mass Spectrometry

Separation Techniques with Mass Spectrometry

Separation mass separating agent

Separation mass spectrometry

Separation mass transport through

Separation of Array Elements (Ion Mass Range)

Separation of mass transfer from chemical reaction

Separation techniques and mass spectrometry

Separations Based on Mass or Density

Separators mass balance calculations

Supercritical fluid separations mass transfer

Tandem mass spectrometry separation methods

Tandem mass spectrometry separation techniques

Thermodynamic Effects on Mass Separation

Time mass separation

Two-Dimensional Gel Separation or DIGE and Mass Spectrometry

© 2024 chempedia.info